PSC 40A Theoretical Foundations of Data Science I

Announcements

- Homework 7 due 12/6. > no skp days
- · SET (currently < 40%)
- Final exam guidelines on Ed
 Review on Friday during lecture

Remember, you can always ask questions at <u>q.dsc40a.com</u>!

If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of <u>dsc40a.com</u>.

Outline

- We'll look at the clustering problem in machine learning and an algorithm that solves this problem.
- Look out for connections to loss functions and risk minimization!

Clustering: Applications

- Bot detection
 - Marketing to different subpopulations
 - Discovering structure:
 - strains of viruses
 - new species
 - communities in a social network
 - chemicals properties

Clustering: Problem Statement

Given a list of n data points (or vectors) in R^d

$$\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$$

 $\vec{\chi}_i \in \mathbb{R}^*$

 $\begin{bmatrix} 1 \\ 17 \\ -23 \\ 100 \end{bmatrix} = 61R^{4}$

and a positive integer, k,

group the data points into k groups (clusters) of nearby points.

Clustering: Problem Statement

Given a list of n data points (or vectors) in R^d

and a positive integer, k,

group the data points into k groups (clusters) of nearby points.

 $\begin{array}{cccc} & & & & \\ &$

How to define groups?

Pick k cluster centers (centroids),

$$\mu_{1}, \mu_{2}, ..., \mu_{k}$$

These k centroids define the k groups, by placing each data point

in the group corresponding to the nearest centroid.

How to define centroids?

Choose the k cluster centers (centroids) to minimize a cost function.

Lloyds Algorithm, or k-Means Clustering

- 1. Randomly initialize the k centroids.
- 2. Keep centroids fixed. Update groups.

Assign each point to the nearest centroid.

3. Keep groups fixed. Update centroids.

Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until done.

Step 1: Randomly initialize the k centroids.

Two common strategies:

- Randomly select k of the data points x_i.
- Randomly assign each data point to one of k groups. Set the centroid of each group to be the center of the points assigned to that group.

Step 2: Keep centroids fixed. Update groups.

For each point,

- find the nearest centroid and
- add the point to a group
 corresponding to that nearest
 centroid.

Step 3: Keep groups fixed. Update centroids.

For each centroid,

- average the coordinates of all data points in the group, and
- move the centroid to this center point with average coordinates.

Step 3: Keep groups fixed. Update centroids.

For the blue group of points, approximately where will the centroid move to?

Step 4: Repeat steps 2 and 3 until done.

Done when:

- max number of iterations is reached, or
- centroids don't move (at all, or very much), or 7 converge
- groups don't change (at all, or very much)

k-Means Clustering Example

k-Means Clustering Example

- We described the clustering problem and the k-means algorithm, which solves this problem.
- **Next time:** We'll see that updating the centroids according to this algorithm reduces the cost with each iteration.

Cost($\mu_1, \mu_2, ..., \mu_k$) = total squared distance of each data point x_i to its nearest centroid μ_i