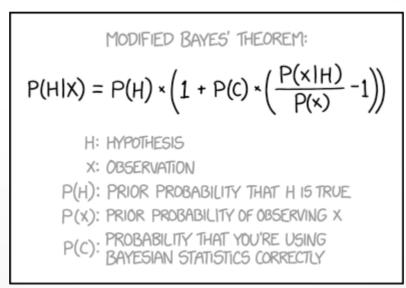
PSC 40A Theoretical Foundations of Data Science I

Announcements

- Homework 6 due today
- Homework 5 grades released
- Homework 7 will be released Wednesday 11/27 and due 12/6.



Remember, you can always ask questions at <u>q.dsc40a.com</u>!

If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of <u>dsc40a.com</u>.

- Bayes Theorem
- Naïve Bayes Classifier

Source: xkcd

Bayes Theorem

Last Week

• We defined Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

 Bayes' Theorem describes how to update the probability of one event given that another has occurred.

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$
not

$$P(A|B) * P(B)$$
B

$$P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})$$

Bayes' Theorem

For hypothesis H and evidence (data) E

$$P(H \mid E) = \frac{P(E \mid H) f(H)}{P(E)} = \frac{P(E \mid H) \cdot P(H)}{P(E)} + f(E \mid H) \cdot P(H)$$

 $p(E|H) \neq p(E|H)$

- P(H) prior, initial probability before E is observed
- P(H|E) posterior, probability of H after E is observed
- P(E|H) likelihood, probability of E if the hypothesis is true
- P(E) marginal, probability of E regardless of H

The likelihood function is a function of E, while the posterior probability is a function of H.

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess? A. Close to 95% O. B. Close to 85% C. Close to 40% D. Close to 15%

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)} \stackrel{\text{ff}}{\downarrow}, n \neq H$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer.

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)} = \frac{0.35 \cdot 0.4}{0.35 \cdot 0.4 + 0.5 \cdot 0.4}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time.** ≈ 0.41 What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

$$P(E|H) = 95Y, (TP)$$

 $P(E|H) = 15Y, (FP)$
 $P(H|E) = 41Y,$
 $P(H) = 10Y,$
 $P(H) = 90Y,$

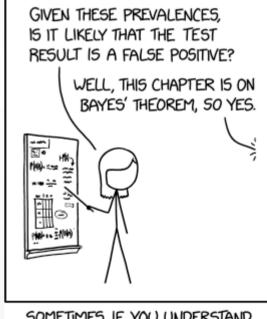
$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time.** What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive


Despite manufacturer's claims, only **41% chance** that cyclist used steroids.

Example

- 1% of people have a certain genetic defect
- 90% of tests accurately detect the gene (true positives).
- 7% of the tests are false positives.

H - has genetic disorder E - positive best result

If Olaf gets a positive test result, what are the odds he actually has the genetic defect?

SOMETIMES, IF YOU UNDERSTAND BAYES' THEOREM WELL ENOUGH, YOU DON'T NEED IT.

- Hypothesis: Olaf has the gene, P(H) = 0.01
- Evidence: Olaf got a positive test result, P(E)
- True positive: Probability of positive test result if someone has the gene P(E|H) = 0.3
- False positive: Probability of positive test result if someone doesn't have the gene $P(E | \overline{H}) = 0.0 \gamma$

Calculate

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} = \frac{P(E|H)P(H)}{P(E|H)P(H)} = \frac{P(E|H)P(H)}{P(E|H)P(H)P(H)P(H)P(H)P(H)}$$

$$= \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.97 \cdot 0.99} = 0.115$$

The probability that Olaf has the gene is only 11.5 hespite the positive test result!

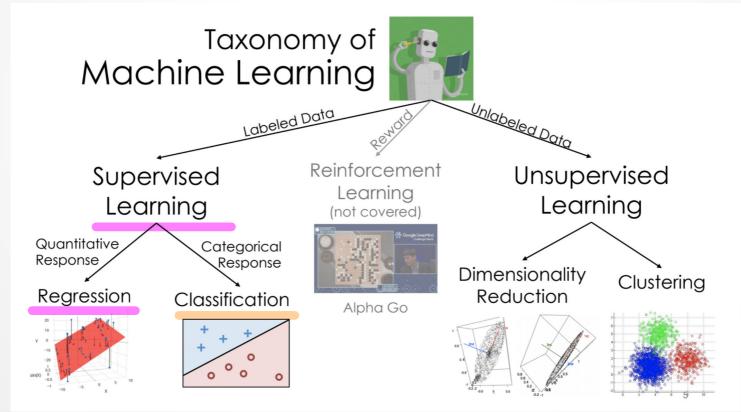
What happens if there are less false positives? Consider $P(E|\overline{H}) = 0.02$:

$$P(H|E) = \frac{0.3 \cdot 0.01}{0.3 \cdot 0.01 + 0.02 \cdot 0.99} = 31'.$$

The probability that Olaf has the gene is now _

31 7.

What happens if there are more true positives? Consider P(E|H) = 0.95:


$$P(H|E) = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.11 + 0.07 \cdot 0.99} = 0.12$$

Improving the accuracy of true positives raised the probability that Olaf has the gene to $\frac{127}{}$.

Naïve Bayes Classifier

Today

• Using Bayes' Theorem to solve the classification problem

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

B = belonging to a certain classA = having certain features

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Classification

- Making predictions based on examples (training data)
- Response variable is categorical
- Categories are called *classes*
- Examples:
 - decide whether patient has kidney disease
 - o identify handwritten digits MNIST 20,1,2,3,4,5,6,7,9,93
 - determine whether an avocado is ripe
 - predict whether credit card activity is fraudulent

features	cl							
		Example						
Color	Ripeness	You have a green-black avocado. Based on this data, would						
bright green	unripe	you predict that your avocado is ripe or unripe?						
green-black	ripe							
purple-black	ripe							
green-black	unripe	Which class would you predict?						
purple-black	ripe	A. ripe B. unripe						
bright green	unripe	D. dilipe						
green-black	ripe							
purple-black	ripe							
green-black	ripe							
green-black	unripe							
purple-black	ripe							

Example

a la construction de la const		
Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	
purple-black	ripe	Strategy: Calculate two probabilities:
green-black	unripe	# (ripe and green black)
purple-black	ripe	$P(ripe green-black) \approx \frac{\#(ripe and green black)}{\#(green black)} = \frac{3}{5}$
bright green	unripe	4 (green black) S
green-black	ripe	P(unripe green-black) $\approx \frac{2}{5}$
purple-black	ripe	
green-black	ripe	Then choose the class according to the larger of these two
green-black	unripe	probabilities. $3 2$
purple-black	ripe	s s -> rec

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)} \text{ ain class} \qquad \begin{array}{c} B - belonging to \\ certain class \\ A - features \end{array}$$

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) \ast P(B)}{P(A)} \text{ ain class}$$
 , the second state of the second stat

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Can all be estimated from the training data

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	
green-black	unripe	P(features) = P(features)
purple-black	ripe	p(green black/ripe)= 3 7
bright green	unripe	ア トーデ ボ ろ
green-black	ripe	P(ripe) = 7 = ripe aus cados 5
purple-black	ripe	total avocados
green-black	ripe	
green-black	unripe	P(green black)= 5 P(unripe/greenblach)=
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{features})}$
green-black	unripe	P(leatures)
purple-black	ripe	
bright green	unripe	P (class / features) =
green-black	ripe	
purple-black	ripe	P (feathres)
green-black	ripe	
green-black	unripe	
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would			
bright green	unripe	you predict that your avocado is ripe or unripe?			
green-black	ripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$			
purple-black	ripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{D(\text{features})}$			
green-black	unripe	P(features) = P(features)			
purple-black	ripe				
bright green	unripe	Shortcut: Both probabilities have same denominator. To			
green-black	ripe	find larger one, choose one with larger numerator.			
purple-black	ripe	P(ripe green-black) $\propto \frac{3}{7} \cdot \frac{7}{11} = \frac{3}{11}$			
green-black	ripe	$F(npe green-black) \sim 7 n n$			
green-black	unripe	P(m, m, m			
purple-black	ripe	P(unripe green-black) $\mathcal{K} = \frac{2}{4} \cdot \frac{4}{4} = \frac{2}{41}$			

More Features

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	
bright green	firm	Zutano	unripe	ć
green-black	medium	Hass	ripe	ŀ
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate two probabilities:

P(ripe | firm, green-black, Zutano) Problem: No firm & green black & Zutano P(unripe | firm, green-black, Zutano)

Then choose the class according to the **larger** of these two probabilities.

Color	Softness	Variety	Ripeness	
bright green	firm	Zutano	unripe	
green-black	medium	Hass	ripe	
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Problem: We have not seen an avocado with all these features. Both probabilities will be undefined.

P(ripe | firm, green-black, Zutano)

P(unripe | firm, green-black, Zutano)

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) = - P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	Solution: Use Bayes' Theorem, plus a
purple-black	soft	Hass	ripe	simplifying assumption, to calculate the
green-black	soft	Zutano	ripe	two numerators.
green-black	firm	Hass	unripe	=) Naive Bayes Classifier!
purple-black	medium	Hass	ripe	-) Naive Bayes Classifier.

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) = P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	Simplifying assumption: Within a given
purple-black	soft	Hass	ripe	class, the features are independent.
green-black	soft	Zutano	ripe	P(firm, green-black, Zutano ripe) =
green-black	firm	Hass	unripe	P(firm ripe)*P(green-black ripe)*P(Zutano ripe)
purple-black	medium	Hass	ripe	

Conditional Independence

• Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

• A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

• Given that C occurs, this says that A and B are independent of one another.

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) $P(features)$
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	Assuming conditional independence of
bright green	firm	Zutano	unripe	features given the class, calculate
green-black	soft	Zutano	ripe	P(firm, green-black, Zutano unripe).
purple-black	soft	Hass	ripe	B. 1/4
green-black	soft	Zutano	ripe	C. 3/16
green-black	firm	Hass	unripe	D. 1 - (1/7*3/7*2/7)
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe? $P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{features})}$
bright green	firm	Zutano	unripe	
green-black	medium	Hass	ripe	
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Naïve Bayes Algorithm

- Bayes' Theorem shows how to calculate P(class | features). $P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$
- Rewrite the numerator, using the naïve assumption of conditional independence of features given the class.
- Estimate each term in the numerator based on the training data.
- Select class based on whichever has the larger numerator.

- The Naïve Bayes algorithm gives a strategy for classifying data according to its features.
- It relies on an assumption of conditional independence of the features.
- Next time: application to text classification