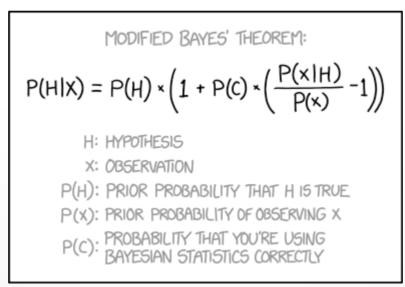
PSC 40A Theoretical Foundations of Data Science I

Announcements

- Homework 6 due today
- Homework 5 grades released
- Homework 7 will be released Wednesday 11/27 and due 12/6.



Remember, you can always ask questions at <u>q.dsc40a.com</u>!

If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of <u>dsc40a.com</u>.

- Bayes Theorem
- Naïve Bayes Classifier

Source: xkcd

Bayes Theorem

• We defined Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

 Bayes' Theorem describes how to update the probability of one event given that another has occurred.

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * P(B|A) = P(A \text{ and } B) = P(B) * P(A|B)$$

Bayes' Theorem:

$$\begin{split} P(B|A) &= \frac{P(A|B)*P(B)}{P(A)} & \text{not} \\ &= \frac{P(A|B)*P(B)}{P(B)*P(A|B)+P(\overline{B})*P(A|\overline{B})} & \mathsf{B} \end{split}$$

Bayes' Theorem

For hypothesis *H* and evidence (data) *E*

$$P(H \mid E) = \frac{P(E \mid H)}{P(E)}$$

- P(H) prior, initial probability before E is observed
- P(H|E) posterior, probability of H after E is observed
- P(E|H) likelihood, probability of E if the hypothesis is true
- P(E) marginal, probability of E regardless of H

The likelihood function is a function of E, while the posterior probability is a function of H.

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess?

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer. A. Close to 95% B. Close to 85% C. Close to 40% D. Close to 15%

$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$

A manufacturer claims that its drug test will **detect steroid use 95% of the time.** What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

$$P(H|E) = \frac{P(E|H)P(H)}{P(E|H)P(H) + P(E| \sim H)P(\sim H)}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time.** What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

H: used steroids

E: tested positive

Despite manufacturer's claims, only **41% chance** that cyclist used steroids.

Example

- 1% of people have a certain genetic defect
- 90% of tests accurately detect the gene (true positives).
- 7% of the tests are false positives.

If Olaf gets a positive test result, what are the odds he actually has the genetic defect?

SOMETIMES, IF YOU UNDERSTAND BAYES' THEOREM WELL ENOUGH, YOU DON'T NEED IT.

- Hypothesis: Olaf has the gene, P(H) =
- Evidence: Olaf got a positive test result, P(E)
- True positive: Probability of positive test result if someone has the gene P(E|H) =
- False positive: Probability of positive test result if someone doesn't have the gene $P(E | \overline{H}) =$

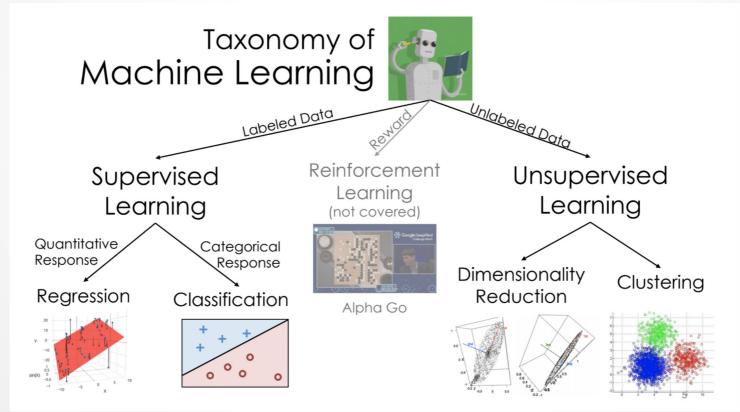
Calculate

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

The probability that Olaf has the gene is only _____ despite the positive test result!

What happens if there are less false positives? Consider $P(E|\overline{H}) = 0.02$:

The probability that Olaf has the gene is now _____


What happens if there are more true positives? Consider P(E|H) = 0.95:

Improving the accuracy of true positives raised the probability that Olaf has the gene to _____.

Naïve Bayes Classifier

Today

• Using Bayes' Theorem to solve the classification problem

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

B = belonging to a certain classA = having certain features

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Classification

- Making predictions based on examples (training data)
- Response variable is categorical
- Categories are called *classes*
- Examples:
 - decide whether patient has kidney disease
 - identify handwritten digits
 - determine whether an avocado is ripe
 - predict whether credit card activity is fraudulent

Example

Color	Ripeness	You have a green-black avocado. Based on this data, would you predict that your avocado is ripe or unripe?					
bright green	unripe						
green-black	ripe						
purple-black	ripe						
green-black	unripe	Which class would you predict?					
purple-black	ripe	A. ripe					
bright green	unripe	B. unripe					
green-black	ripe						
purple-black	ripe						
green-black	ripe						
green-black	unripe						
purple-black	ripe						

Example

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	
purple-black	ripe	Strategy: Calculate two probabilities:
green-black	unripe	
purple-black	ripe	P(ripe green-black)
bright green	unripe	
green-black	ripe	P(unripe green-black)
purple-black	ripe	
green-black	ripe	Then choose the class according to the larger of these two
green-black	unripe	probabilities.
purple-black	ripe	

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) \ast P(B)}{P(A)} \text{ ain class}$$
 , the second state of the second stat

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) \ast P(B)}{P(A)} \text{ ain class}$$
 ures

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Can all be estimated from the training data

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	P(class features) =
green-black	unripe	P(features)
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	P(class features) =
green-black	unripe	P(features)
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would				
bright green	unripe	you predict that your avocado is ripe or unripe?				
green-black	ripe	P(class fostures) = P(features class) * P(class)				
purple-black	ripe					
green-black	unripe	P(features) = P(features)				
purple-black	ripe					
bright green	unripe	Shortcut: Both probabilities have same denominator. To				
green-black	ripe	find larger one, choose one with larger numerator.				
purple-black	ripe	D(ring Largon black)				
green-black	ripe	P(ripe green-black)				
green-black	unripe					
purple-black	ripe	P(unripe green-black)				

More Features

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	١
bright green	firm	Zutano	unripe	6
green-black	medium	Hass	ripe	F
purple-black	firm	Hass	ripe	l
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Strategy: Calculate two probabilities:

P(ripe | firm, green-black, Zutano)

P(unripe | firm, green-black, Zutano)

Then choose the class according to the **larger** of these two probabilities.

Color	Softness	Variety	Ripeness	
bright green	firm	Zutano	unripe	
green-black	medium	Hass	ripe	
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe?

Problem: We have not seen an avocado with all these features. Both probabilities will be undefined.

P(ripe | firm, green-black, Zutano)

P(unripe | firm, green-black, Zutano)

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) = P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	Solution: Use Bayes' Theorem, plus a
purple-black	soft	Hass	ripe	simplifying assumption, to calculate the
green-black	soft	Zutano	ripe	two numerators.
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) = P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	Simplifying assumption: Within a given
purple-black	soft	Hass	ripe	class, the features are independent.
green-black	soft	Zutano	ripe	P(firm, green-black, Zutano ripe) =
green-black	firm	Hass	unripe	P(firm ripe)*P(green-black ripe)*P(Zutano ripe)
purple-black	medium	Hass	ripe	

Conditional Independence

• Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

• A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

• Given that C occurs, this says that A and B are independent of one another.

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	$P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{class})}$
purple-black	soft	Hass	ripe	P(features) $P(features)$
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	Assuming conditional independence of
bright green	firm	Zutano	unripe	features given the class, calculate
green-black	soft	Zutano	ripe	P(firm, green-black, Zutano unripe).
purple-black	soft	Hass	ripe	B. 1/4
green-black	soft	Zutano	ripe	C. 3/16
green-black	firm	Hass	unripe	D. 1 - (1/7*3/7*2/7)
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe? $P(\text{class} \text{features}) = \frac{P(\text{features} \text{class}) * P(\text{class})}{P(\text{features})}$
bright green	firm	Zutano	unripe	
green-black	medium	Hass	ripe	
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Naïve Bayes Algorithm

- Bayes' Theorem shows how to calculate P(class | features). $P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$
- Rewrite the numerator, using the naïve assumption of conditional independence of features given the class.
- Estimate each term in the numerator based on the training data.
- Select class based on whichever has the larger numerator.

- The Naïve Bayes algorithm gives a strategy for classifying data according to its features.
- It relies on an assumption of conditional independence of the features.
- Next time: application to text classification