DSC 40A Theoretical Foundations of Data Science I

Today

● More examples of using combinatorics to solve probability questions.

HW ⁶ released today , due next Mon

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of dsc40a.com.

Example 8. What is the probability that a randomly generated bitstring of length 10

$$
\frac{0}{\gamma} \frac{0}{\omega} \frac{1}{\omega} - \frac{1}{\omega} \frac{1}{\omega}
$$
\n
$$
\frac{0}{\sqrt{2}} \frac{0}{\omega^{2}} \frac{1}{\omega^{2}} - \frac{1}{\omega} \frac{1}{\omega^{2}} \frac
$$

Example 7. What is the probability that a randomly generated bitstring of length 10 contains an equal number of zeros and ones?

$$
0000011111 - \frac{1}{s} - \frac{1
$$

Why is the positive?
a set
$$
y + y
$$
, $y = 1$ and
a set $y + y$, $y = 1$ and $y = 1$, $y = 1$

How to solve using permutations? Recall : (# sequences ⁼ # sets . # orderings & 1 option ¹⁰options options ina ↓ we have to place : ^S os S ^S is in ¹⁰ places--------- so we could calculate all possible permutations = ¹⁰ ! ⁼ ¹⁰ . %. + . 76 · 5 . 4 . 3 . 2 . 1 However since the objects we are permuting (bits) aren't unique note the following : Let's start out with 0000011111 if we swap first and last bits we get 1000011110 which is ^a different string from the previous one we had if we shuffle the first two bits we get 000001111e which is the same SSo all permutations of the ⁰ , among t themselves are equivalent ⁼ ^S! and all permutations of the t's amongst themselves are equivalent ⁼S. Therefore # of ^I unique bitstrings ⁼ s = <(10) & which is the same answer as using sets

Example 10. What is the probability that a fair coin flipped 10 times turns up HHTTHHTTHT?

number of heads and tails? $G_{\rm{e}}$ and principle

Counting as a Tool for Probability
\n**Example 9.** What is the probability that a fair coin flipped 10 times turns up an equal number of heads and tails?
\n
$$
\begin{array}{ccc}\n\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
n=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
n=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
n=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
n=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
k=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
k=10 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
n=11 & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \zeta_{\ell k} \\
\zeta_{\ell k} & \z
$$

Example 12. What is the probability that a biased coin with $Prob(H) = \frac{1}{3}$ flipped 10 times turns up HHTTHHTTHT?

$$
n^{p+ \text{uniform}} \qquad \qquad \text{prob}(\text{HH...H}) = \left(\frac{1}{3}\right)^{10} \qquad \text{prob}(\text{TH...T}) = \left(\frac{2}{5}\right)^{10}
$$
\n
$$
2^{40} \qquad \qquad \frac{7}{5} \qquad \qquad \frac{1}{5} \qquad \frac
$$

Example 11. What is the probability that a biased coin with
$$
Prob(H) = \frac{1}{3}
$$
 flipped 10 times turns up an equal number of heads and tails?
\n
$$
\int e^{-x} \cos(h \cos s s \sin \theta) \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \cos(h \cos s s \sin \theta) \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \cos(h \cos s s \sin \theta) \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \cos h \cos s s \sin \theta \sin \theta
$$
\n
$$
= \int e^{-x} \cos h \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \cos h \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \sinh \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \sinh \cos s s \sin \theta
$$
\n
$$
= \int e^{-x} \sinh \sinh \theta
$$
\n
$$
= \int e^{-x} \sinh \
$$

 \int_{α} i_{α} \int_{α} \int_{α Example 2: 6H, 4T ρ (EE) = $(\frac{1}{3})^6 (\frac{2}{3})^9$ $P(E) = C(10, 6) (\frac{1}{3})^{6} (\frac{2}{3})^{4} \sim$ these are
not egual Example 3: 67, 4H
 g (s E E) = $(\frac{2}{3})^{6}(\frac{1}{3})^{4}$ $\int_{R} (E)^{2} \subset (10,6)(\frac{25}{3})^{6} (\frac{1}{3})^{4}$

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

> We solved twice sequences - complement - sets

> > from Theory Meets Data by Ani Adhikari, Chapter 4

The Easy Way

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

Another way to think of sampling without replacement:

- 1. randomly shuffle all 20 students
- 2. take the first 5

$$
S = \text{possible positive}
$$
\n
$$
E = \text{student} + 17
$$
\n
$$
E = \text{student} + 17
$$
\n
$$
S = 20
$$
\n
$$
E = 5
$$
\n
$$
S = \frac{5}{4}
$$
\n
$$
S = \frac{1}{4}
$$

from Theory Meets Data by Ani Adhikari, Chapter 4

Example 13. You were one of 238 individuals who reported for jury duty. If 54 of these people will be assigned to a courtroom, what is the probability that you get assigned to a courtroom?

Sampling without replacement
\nSample space: 238 positions
\nShurther and select first
$$
su \Rightarrow prob \frac{54}{239}
$$

\nAlternate: 5 is set of 54 chosen from 239
\nC(238, 54) \leftarrow denominator

a courtroom?

Practice Problems
\n**Example 13.** You were one of 238 individuals who reported for jury duty. If 54 of the
\neople will be assigned to a countryom, what is the probability that you get assigned
\ncourtroom?
\n**Set** of ⁵⁴
$$
\ln c \ln(4 \ln 3 \ln 964 \implies \text{New } \frac{1}{2} \ln 6 \implies \frac{1}{2} \ln 1 \implies \frac{1}{2} \ln
$$

Example 14. You were one of 238 individuals who reported for jury duty. Suppose 28 of these individuals are doctors. If 54 of these people will be assigned to a courtroom, what is the probability that exactly 5 doctors get assigned to a courtroom?

$$
S = sets of SU chessen from 239 |S| = C (238, 54)
$$
\n
$$
P \sim b \left(\text{ln } 54 \text{ out of } 238 \right)
$$
\n
$$
= \frac{\text{# sets in } S \text{ with } J \text{ doctors} \left((238, 5) \right) \left(\text{mod } 49 \right)}{\text{# sets in } S} = \frac{\left((23, 5) \right) \left(\text{mod } 49 \right)}{\left((23, 5) \right) \left((249, 19) \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 6 \right)}{\left(\text{dim } 54 \text{ out of } 6 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 6 \right)}{\left(\text{dim } 54 \text{ out of } 6 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 6 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of } 14 \right)}
$$
\n
$$
= \frac{\left(\text{dim } 54 \text{ out of } 14 \right)}{\left(\text{dim } 54 \text{ out of }
$$

Example 15. What is the probability that your five-card poker hand is a straight?

Example 16. Suppose you look at your first card as it is dealt, and you see that it is a Queen. What is the probability that your five-card hand is a straight?

Summary

- Counting is a useful tool for probability.
- Sometimes there's an easy way!
- **Next time:** Bayes Theorem