DSC 40A Theoretical Foundations of Data Science I

Lecture 20-21: Combinatorics

Announcements

- Homework 5 due tonight
- Upcoming homework schedule: Homework 6 released Monday 11/18 and due 11/25

Agenda

- How do we count the number of outcomes, besides enumerating them all?
 - How many outcomes are possible if a die is rolled 100 times?
 - How many different ways are there to shuffle 52 cards?
 - How many ways are there to choose a jury of 12 people from a panel of 100?
- Many probability questions can be solved by counting, or combinatorics.
- We'll learn how to count sequences and sets.

Remember, you can always ask questions at <u>q.dsc40a.com</u>!

If the direct link doesn't work, click the "Lecture Questions" link in the top right corner of <u>dsc40a.com</u>.

Combinatorics

Today

- How do we count the number of outcomes, besides enumerating them all?
 - How many outcomes are possible if a die is rolled 100 times?
 - How many different ways are there to shuffle 52 cards?
 - How many ways are there to choose a jury of 12 people from a panel of 100?
- Many probability questions can be solved by counting, or combinatorics.
- We'll learn how to count sequences and sets.

Sequences vs. Sets

Sequences l'ist, tuple	Sets clection of elements
Order matters	Order does not matter
Repetitions allowed (with replacement)	No repetitions allowed (without replacement)
Elements listed in order	Elements listed in no particular order within curly braces
Ex: 2, 4, 5 ≠ 4, 2, 5	Ex: $\{2, 4, 5\} = \{4, 2, 5\}$
Ex: 2, 2, 2 ≠ 2, 2	Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$
Ex: 1, 3, 4 = 1, 3, 4	Ex: $\{1, 3, 4\} = \{1, 3, 4\}$

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: 2, 4, 5 \neq 4, 2, 5

Ex: 2, 2, 2 ≠ 2, 2

Ex: 1, 3, 4 = 1, 3, 4

Example 1:

draw a card, put it back, repeat four more times

$$\neq (22, 62, 62, A8, A8, 33)$$

Example 2: flip a coin 100 times

a coin 100 times

(H, T, T, H, ..., H, T, T, T)

Sequences	A UCSD PID sta How many UCS	rts with "A" then has 8 digits. O PIDs are possible?
Order matters	A. 8 ¹⁰	C. 8!
Repetitions allowed	B. 10 ⁸	D.
Elements listed in order		
Ex: 2, 4, 5 ≠ 4, 2, 5		
Ex: 2, 2, 2 ≠ 2, 2		
Ex: 1, 3, 4 = 1, 3, 4	10 digits	10.10.10.10-108
		8 times

Sec	quences	
Orde	er matters	
Rep	etitions allowed	
Elen	nents listed in order	
Ex:	2, 4, 5 ≠ 4, 2, 5	
Ex:	2, 2, 2 ≠ 2, 2	
Ex:	1, 3, 4 = 1, 3, 4	

A UCSD PID starts with "A" then has 8 digits.		
How many UCSD PIDs are possible?		
A. 8 ¹⁰	C. 8!	
B. 10 ⁸	D.	

P is the population you can draw from and |P| is the size of that population (number of elements). with replacement How many sequences of length k are there?

$$\underbrace{|P| \cdot |P| \cdots |P|}_{k \text{ times}} = |P|^k - n^k$$

Sec	quences
Orde	er matters
Rep	etitions allowed
Elen	nents listed in order
Ex:	2, 4, 5 ≠ 4, 2, 5
Ex:	2, 2, 2 ≠ 2, 2
Ex:	1, 3, 4 = 1, 3, 4

<u>Expone</u> Flip a c	<u>ential growth</u> coin <i>n</i> times
n	# of Sequences of Length n
5	$2^5 = 32$
10	$2^{10} = 1024$
15	2 ¹⁵ = 32,758
20	2 ¹⁵ ≈ 1 million
50	2 ⁵⁰ ≈ # of grains of sand on Earth

Sequences	How many ways to select a president, vice
Order matters	people?
Repetitions allowed	D = X
Elements listed in order	4-3
Ex: 2, 4, 5 ≠ 4, 2, 5	president i 9 options without replacement
Ex: 2, 2, 2 ≠ 2, 2	Vice-president à Topilons (1) - cit
Ex: 1, 3, 4 = 1, 3, 4	$-8.7.6$ $\frac{5}{2}$ $\frac{3}{2}$ $\frac{2}{7}$ $\frac{3}{7}$ $\frac{2}{7}$ $\frac{3}{7}$ $\frac{5}{7}$

U

VP

S

Sequences Order matters	How many ways to select a president, vice president, and secretary from a group of 8 people?
Repetitions allowed	n=2 (#elements to choose from)
Elements listed in order	k=3 (# distinct elements to
Ex: 2, 4, 5 ≠ 4, 2, 5	- O(2) 27 (
Ex: 2, 2, 2 ≠ 2, 2	P(8,s) = 8.4.6
Ex: 1, 3, 4 = 1, 3, 4	$P(n,k) = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-(k-1)) = \frac{n!}{(n-k)!}$
Sequences where repetitions are n	ot allowed are <u>Permutations</u>

Sets

There are 24 ice cream flavors. How	w many s? Sets
A. 24 C. 24*	Order does not matter
B. 24*23 D. 12*	23 No repetitions allowed
for the set	Elements listed in no particular order within curly braces
$\nabla T = \nabla T$	Ex: $\{2, 4, 5\} = \{4, 2, 5\}$
	Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$
use sequences CVZVC	Ex: $\{1, 3, 4\} = \{1, 3, 4\}$
# sequence: 24.23 #sets = #sets = #se #ou	derings = $\frac{24 \cdot 23}{2} = 12 \cdot 23 \implies #sets #ordering$

Sets

Permutations vs. Combinations

Permutations	Combinations
Order matters	Order does not matter
No repetitions allowed (without replacement)	No repetitions allowed (without replacement)
Counts the number of sequences of k distinct elements chosen from n possible elements	Counts the number of sets of size k chosen from n possible elements
$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$	"n choose k" $C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
How many ways to select a president, vice president, and secretary from a group of 8 people? P(8,3)	How many ways to select a committee of 3 from a group of 8? C(8,3)

Permutations vs. Combinations

Permutations

Order matters

No repetitions allowed (without replacement)

Counts the number of **sequences of k distinct elements** chosen from n possible elements

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

How many ways to select a president, vice president, and secretary from a group of 8 people? P(8,3)

Without replace ment Example 1:

draw a card, don't put it back, repeat four more times

(**A♥**, 2♣, 6♠, **7♥**, 3♦)

Example 2: rank 2 best cities to live in out of list of 10

SD, LA

Permutations vs. Combinations

Combinations

Order does not matter

No repetitions allowed (without replacement)

Counts the number of **sets of size k** chosen from n possible elements

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

How many ways to select a committee of 3 from a group of 8?

C(8,3)

Example 1:

draw a hand of 5 cards from a deck of 52

Example 2: Select 5 student from the class

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

(20,5)

Part 2. Numerator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals include a particular person?

of sets of length 5 chosen from 20
including person 17
key: the same as choosing 4 out of 19
$$= C(19,4)$$

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sets of individuals do not include a particular person?

It sets of length 5 chosen from 20 not including 17
chosen from 19 students

$$-= ((19, 5))$$

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

$$P\left(\begin{array}{c} \text{set includin}_{1}(17) = \frac{\text{# sets with } 17}{\text{# sets}} \\ = \frac{C(19, 4)}{C(20, 5)} \\ = \frac{10!}{\frac{10!}{5! \text{ lost}}} \\ = \frac{10!}{\frac{20!}{5! \text{ lost}}} \\ = \frac{10!}{5! \text{ lost}} \\ = \frac{1$$

Summary

- To calculate P(E) we need to find |E|
- We need to count sequences or sets
- Must decide if order matters
- When elements are distinct: permutations vs. combinations

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$
$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Next time: more examples

PSC 40A Theoretical Foundations of Data Science I

Today

 More examples of using combinatorics to solve probability questions.

Example 7. What is the probability that a randomly generated bitstring of length 10 contains an equal number of zeros and ones?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 8. What is the probability that a randomly generated bitstring of length 10 is the string 0011001101?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 9. What is the probability that a fair coin flipped 10 times turns up an equal number of heads and tails?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 10. What is the probability that a fair coin flipped 10 times turns up HHTTHHTTHT?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 11. What is the probability that a biased coin with $Prob(H) = \frac{1}{3}$ flipped 10 times turns up an equal number of heads and tails?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 12. What is the probability that a biased coin with $Prob(H) = \frac{1}{3}$ flipped 10 times turns up HHTTHHTTHT?

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!} \qquad C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Another way to think of sampling without replacement:

- 1. randomly shuffle all 20 students
- 2. take the first 5

Example 13. You were one of 238 individuals who reported for jury duty. If 54 of these people will be assigned to a courtroom, what is the probability that you get assigned to a courtroom?

Example 13. You were one of 238 individuals who reported for jury duty. If 54 of these people will be assigned to a courtroom, what is the probability that you get assigned to a courtroom?

How many sets of 54 individuals include you?		
A. C(238, 54)	C. C(238, 53)	
B. C(237, 54)	D. C(237, 53)	

Example 14. You were one of 238 individuals who reported for jury duty. Suppose 28 of these individuals are doctors. If 54 of these people will be assigned to a courtroom, what is the probability that exactly 5 doctors get assigned to a courtroom?

Example 15. What is the probability that your five-card poker hand is a straight?

Example 16. Suppose you look at your first card as it is dealt, and you see that it is a Queen. What is the probability that your five-card hand is a straight?

Summary

- Counting is a useful tool for probability.
- Sometimes there's an easy way!
- Next time: Bayes Theorem