
1



Midterm topics donot include :

-
-

* center & spread (questions in practice site
about mean absolute

deviation)

* gradient descent
m

HW4 solution will be released on Sunday



Now, we'll explore the following ideas:

When is gradient descent guaranteed to converge to a global minimum?
What kinds of functions work well with gradient descent?

How do I choose a step size?

How do I use gradient descent to minimize functions of multiple variables, e.g.:
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When is gradient descent guaranteed to work?
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A convex function A non-convex function 
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A function  is convex if, for every  in the domain of , the line segment
between:

does not go below the plot of .
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A function  is convex if, for every  in the domain of , the line segment
between:

does not go below the plot of .

A non-convex function 21
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A function  is convex if, for
every  in the domain of , and for every

:

A function is nonconvex if it is not convex.

This is a formal way of restating the
definition from the previous slide.
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Answer at q.dsc40a.com

Is  convex?

A. Yes
B. No

C. Maybe
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Reminder: Traingle inequality: 
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Answer at q.dsc40a.com

Which of these functions are not convex?

A. .
B. .

C. .

D. .

E. More than one of the above are non-convex.
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A concave function is the negative of a convex function.
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If  is a function of a single variable and is twice differentiable, then  is
convex if and only if:

concave if and only if:

Example:  is convex.
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Convex functions are (relatively) easy to minimize with gradient descent.

Theorem: If  is convex and differentiable, then gradient descent converges to a
global minimum of , as long as the step size is small enough.

Why?

Gradient descent converges when the derivative is 0.
For convex functions, the derivative is 0 only at one place – the global
minimum.

In other words, if  is convex, gradient descent won't get "stuck" and
terminate in places that aren't global minimums (local minimums, saddle
points, etc.).
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We say a function is nonconvex if it does not meet the criteria for convexity.

Nonconvex functions are (relatively) difficult to minimize.

Gradient descent might still work, but it's not guaranteed to find a global
minimum.

We saw this at the start of the lecture, when trying to minimize
.
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In practice, choosing a step size involves a lot of trial-and-error.

In this class, we've only touched on "constant" step sizes, i.e. where  is a constant.

Remember:  is the "step size", but the amount that our guess for  changes is
, not just .

In future courses, you'll learn about "decaying" step sizes, where the value of 
decreases as the number of iterations increases.

Intuition: take much bigger steps at the start, and smaller steps as you
progress, as you're likely getting closer to the minimum.
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More examples
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First, we learned about squared loss,
.

Then, we learned about absolute loss,
.

Let's look at a new loss function, Huber loss:
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pro : differentiable, easy
to minimize

↑ -con : sensitive to outliers

-

pro : robust
to outliers

con : not differentiable, hander tominimize



Squared loss in blue, Huber loss in green.
Note that both loss functions are convex!
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For the constant model, :

So, the derivative of empirical risk is:

It's impossible to set  and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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Consider the function:

It has two partial derivatives:  and .
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If  is a function of multiple variables, then its gradient, , is a vector
containing its partial derivatives.

Example:

Example:
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Example:

The minimizer of  is a vector, .

We start with an initial guess, , and step size , and update our guesses using:
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Given an initial guess of  and a step size of , perform two iterations

of gradient descent. What is ?
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To find optimal model parameters for the model  and squared
loss, we minimized empirical risk:

This is a function of multiple variables, and is differentiable, so it has a gradient!

Key idea: To find  and , we could use gradient descent!
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Let's watch  this animation that Jack made.
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In Homework 5, you'll see a few questions involving today's material.
After the midterm, we'll start talking about probability.
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