Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2024
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Lingering questions
Now, we'll explore the following ideas:
e When is gradient descent guaranteed to converge to a global minimum?
o What kinds of functions work well with gradient descent?
e How do | choose a step size?

e How do | use gradient descent to minimize functions of multiple variables, e.q.:

1
qu(w07w1) - Z(yz _ (’wo + ’w1$i))2
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guaranteed to work?
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Convex functions
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment
between:

(@, f(a)) and (b, f(b))

does not go below the plot of f.
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Convexity

e A function f is convex if, for every a, b in the domain of f, the line segment

between:

(@, f(a)) and (b, f(b))

does not go below the plot of f.

A non-convex function X
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Formal definition of convexity

e Afunction f: R — R is convex if, for
every a, b in the domain of f, and for every

t € 0,1]: Ie 4

-

2K 1%—,(?@5 > 5

(1 —t)f(a) +tf(b) > f((1 —t)a+1tb)
Tunction Lot ween

)<:0\ (}\V]J XCL
e A function is nonconvex if it is not convex. :
. . a1 )
e This is a formal way of restating the T2
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definition from the previous slide.
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Question =
Answer at q.dsc40a.com
s f(x) = || convex?

* A Yes

e B.No
e C. Maybe
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Example: Prove f(x) = |z| is convex / nonconvex

Reminder: Traingle inequality: |a 4+ 8| < |a| + |3
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Question =

T

Answer at q.dsc40a.com

Which of these functions are not convex?

e A f(z) =|x — 4

B. f(z) = e”.
C. f(x) =+vVzx— 1.
D. f(z) = (z — 3)*.

E. More than one of the above are non-convex.
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Convex vs. concave
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Concave functions

e A concave function is the negative of a convex function.
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Second derivative test for convexity

e If f(t) is a function of a single variable and is twice differentiable, then f(t) is
o convex if and only if:

S d2f(t) >0, Vt

at’ She J ot

o concave if and only if:

d’ f
-a3@ﬁ§o,Vt

o Example: f(z) = z*is convex.

£6a= 43
J_\\ &) =1Lx> #0 ¥ x =) OnVvex
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Why does convexity matter?
e Convex functions are (relatively) easy to minimize with gradient descent.

e Theorem: If f(t) is convex and differentiable, then gradient descent converges to a
global minimum of f, as long as the step size is small enough. \

e Why?

o Gradient descent converges when the derivative is 0.

o For convex functions, the derivative is 0 only at one place — the global
minimum.

o In other words, if f is convex, gradient descent won't get "stuck" and
terminate in places that aren't global minimums (local minimums, saddle
points, etc.).
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Nonconvex functions and gradient descent
e We say a function is nonconvex if it does not meet the criteria for convexity.

e Nonconvex functions are (relatively) difficult to minimize.

e Gradient descent might still work, but it's not guaranteed to find a global
minimum.

o We saw this at the start of the lecture, when trying to minimize
f(t) = 5t* — 3 — 5t2 + 2t — 9.

Nown Conviey
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Choosing a step size in practice
e |n practice, choosing a step size involves a lot of trial-and-error.

* |n this class, we've only touched on "constant" step sizes, i.e. where « is a constant.

af
tiv1 =t —a—
e Remember: a is the "step size", but the amount that our guess for ¢ changes is

ol

a—-(t;), not just o

e |n future courses, you'll learn about "decaying" step sizes, where the value of o
decreases as the number of iterations increases.

o Intuition: take much bigger steps at the start, and smaller steps as you
progress, as you're likely getting closer to the minimum.
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Example: Huber loss and the constant model

e First, we learned about squared loss,
qu(yia H(w’&)) — (yi o H(mz))z,
pro: d 1Fhanntiohl e, 2asy T miniaTpe

AN Seasiine to °“‘P\'ws

e Then, we learned about absolute loss,

Labs(yiaﬂ(mi)) — |yz — H(%z)’
r(\o{ robust 1° outliev

' ( \ der *’.
Con " l‘q* Al 'FLMA’\'! a\lb) }“ Pl IR
e Let's look at a new loss function, Huber loss:

3 (yi — H(z;))’

Lyuber (yi, H(z;)) = {5. (ly; — H(xz;)| — %5)

if |y, — H(z;)| <6

otherwise
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Squared loss in blue, Huber loss in green.

Note that both loss functions are convex! 9



Minimizing average Huber loss for the constant model

e For the constant model, H(xz) = h:

21 ( Z. h) . ‘ ) h’ < S.g“ x>'= Z 0 xt()
y 1:[ yz —
upner '1:7 h _]' l, e W e | ( -1 ’<<

\'0" oL —(h) = {—(yi—h) if ly; —h| <
DT(Q 8{ 0= O oh - | —6-sign(y; — h) otherwise
—

e So, the derivative of empirical risk is:

d Rpuber o 1 O (yz — h) if ‘yz — h’ <9
dh (h) = EZ{ - sign(y; — h) otherwise

1=1

 |t's impossible to set %(h) = (0 and solve by hand: we need gradient descent!
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Let's try this out in practice! Follow along in this notebook.
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Minimizing functions of multiple variables

e Consider the function:

f(z1,22) = (21 — 2)* 4+ 221 + (22 — 3)°

e |t has two partial derivatives: g—ai and g—mi.
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The gradient vector

e If f(z) is a function of multiple variables, then its gradient, V f(&), is a vector
containing its partial derivatives.

e Example:
f(&) = (x1 —2)* + 221 + (22 — 3)°
o\ 2%1 — 2
vHE) = |
e Example:

f(7) = 7%

— Vf(z) =
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Gradient descent for functions of multiple variables

e Example:

f(z1,22) = (21 — 2)* + 221 - (22 — 3)°

201 — 2
R

o . i
e The minimizer of fisavector, z* = | _|.
L9
e We start with an initial guess, Z©), and step size &, and update our guesses using:

7+ — 20 _ av.f(a‘f(i))
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Exercise
f(z1,22) = (21— 2)* + 221 + (22 — 3)°

201 — 2
V(@) = [Zm; j 6]

) = 200 _ oV £(20)
Given an initial guess of 70 — [O] and a step size of a = % perform two iterations

of gradient descent. What is #(2)?
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Example: Gradient descent for simple linear regression

e To find optimal model parameters for the model H(x) = wo + w1z and squared
loss, we minimized empirical risk:

Rsq(wo, w1) = — Z(yz — (wo + w1z;))”

e This is a function of multiple variables, and is differentiable, so it has a gradient!

—— Z (wo + w1;))
VR(w) =
—— Z (wo + wiz;))x;

e Key idea: To find wy and w7, we could use gradient descent!



Gradient descent for simple linear regression, visualized

R('UJ(, wl)

Parameters: wg = —0.8,w; = —5.8
gl R(wo,w;) =29.5

Gradient

e

Step Size = 0.1 Negative Gradient

Let's watch »& this animation that Jack made.
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What's next?

e |n Homework 5, you'll see a few questions involving today's material.

o After the midterm, we'll start talking about probability.
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