Lectures 15-16

Gradient Descent and Convexity

DSC 40A, Fall 2024

Agenda

- Minimizing functions using gradient descent.
- Convexity.
- More examples.
	- o Huber loss.
	- o Gradient descent with multiple variables.

 $-HW2Q5a$ - Cheat shet - -HWZQ5a
- Cheatshiet
- FAQs updated
- Reyrode reques
Only through gro
- Chatshiel reques - Regrade requests only through gradescope $(N$ it email, not $OH)$

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "⁵ Lecture Questions" link in the top right corner of dsc40a.com.

Minimizing functions using gradient descent

What does the derivative of a function tell us?

- Goal: Given a differentiable function $f(t)$, find the input t^* that minimizes $f(t)$.
- What does $\frac{d}{dt} f(t)$ mean?

Let's go hiking!

- Suppose you're at the top of a mountain **A** and need to get to **the bottom** .
- Further, suppose it's really cloudy \bullet , meaning you can only see a few feet around you.
- **How** would you get to the bottom?

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes $f(t)$.

If the **slope of the tangent line at** $f(t)$ is positive \mathcal{N} :

- Increasing t increases f.
- This means the minimum must be to the **left** of the point $(t, f(t))$.
- **Solution: Decrease** t **.**

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes $f(t)$.

If the **slope of the tangent line at** $f(t)$ is negative Δ :

- Increasing t decreases f.
- This means the minimum must be to the **right** of the point $(t, f(t))$.
- Solution: Increase t **1.**

Intuition

- To minimize $f(t)$, start with an initial guess t_0 .
- · Where do we go next? \circ If $\frac{df}{dt}(t_0) > 0$, decrease t_0 .
 \circ If $\frac{df}{dt}(t_0) < 0$, increase t_0 .
 $\frac{df}{dt} = t_0 + 1$
- One way to accomplish this:

Gradient descent

To minimize a differentiable function f :

- Pick a positive number, α . This number is called the learning rate, or step size.
- Pick an initial guess, t_0 .
- Then, repeatedly update your guess using the update rule: $\lvert \text{arg} \epsilon : \text{log} \text{deg}$ α small: small stys $t_{i+1} = t_i + \left\langle \alpha \frac{df}{dt}(t_i) \right\rangle$ • Repeat this process until convergence $-\overline{\text{that}}$ is, when t doesn't change much. $16 - 5 - 15$ $\sqrt{\frac{1}{4}}$ is large $f(t)$ -95 -10.5 -11 -11.5 -0.5 0.5 -1

What is gradient descent?

- Gradient descent is a numerical method for finding the input to a function f that minimizes the function. The gradient is a numerical method for finding the input to a function
The gradient descent?
The gradient is the extension of the derivative to functions of multiple
- Why is it called **gradient** descent?
	- variables.
	- We will see how to use gradient descent with multivariate functions next class.
- What is a **numerical** method?
	- \circ A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.

mathematical problem, often by using the compute

It is iterative to, th, $t_1, t_2, ...$

implementation of df initialization convenges a **Gradient descent** $\frac{d+}{d\mu}$ (to) step size stopping control $def gradient_descent(derivature, h, alpha, tol=1e-12):$ """Minimize using gradient descent.""" stopping $\begin{array}{ccc} & \text{where } \mathbf{H} \text{ is the matrix } \mathbf$ $h_{n\overline{H}}h_{n} - d \frac{d\overline{J}}{d\Gamma} (h_{n})$ $\int_{\text{next point}}^{\text{right}} \frac{dh}{r} \frac{dh}{r}$ next point
to yo to c riteria $h = h_{next}$ $|h_{h+n}-h_{n}| < +\infty$ ↓ h^* = ary Min $f(h)$

See this notebook for a demo!

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- Gradient descent is widely used in machine learning, to train models from linear regression to neural networks and transformers (includng ChatGPT)!

Answer at q.dsc40a.com

- For example, consider:
	- \circ The constant model, $H(x) = h$.
	- \circ The dataset $-4, -2, 2, 4$.
	- \circ The initial guess $h_0 = 4$ and the learning rate α

 $l = (y_i - h)$

2

• Exercise: Find h_1 and h_2 .

$$
h_{1} = h_{2} - \alpha \frac{dR_{s}}{dh}(h_{1})
$$

 $h_{2} = h_{1} - \alpha \frac{dR_{s}}{dh}(h_{1})$

$$
Q = (y_{i} - h)^{2}
$$
\n
$$
H(x) = h.
$$
\n
$$
H(x) = h.
$$
\n
$$
P = \frac{1}{2}
$$
\n
$$
P = \frac{1}{2}
$$
\n
$$
P = \frac{1}{4}.
$$

Empirical Minimization with Gradient Descent

$$
R_{\text{sq}} = \frac{1}{n} \sum_{i=1}^n (y_i - h)^2 \qquad \frac{dR_{\text{sq}}}{dh} = \frac{2}{n} \sum_{i=1}^n (h - y_i) = \frac{2}{n} h h - 2 \frac{1}{n} \sum_{i=1}^n y_i
$$

16

• The dataset -4, -2, 2, 4.
\n• The initial guess
$$
h_0 = 4
$$
 and the learning rate $\alpha = \frac{1}{4}$.
\n
$$
h_1 = h_0 - \alpha \frac{dR_s}{dh} l(h_0)
$$
\n
$$
= l_1 - \frac{1}{q} \cdot 8 = 2
$$
\n
$$
= l_1 - \frac{1}{q} \cdot 8 = 2
$$
\n
$$
= l_1 - \frac{1}{q} \cdot 8 = 2
$$
\n
$$
= \frac{1}{2} \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{2} \right)
$$
\n
$$
= l_1 - \alpha \frac{dR_s}{dh} l(h_1)
$$
\n
$$
= 2 - \frac{1}{q} \cdot 4 = 2 - 1 = 1
$$
\n
$$
= \frac{1}{q} \left(\frac{1}{q} + \frac{1}{q} \right)
$$
\n
$$
= \frac{1}{q} \left(\frac{1}{q} + \frac{1}{q} \right)
$$
\n
$$
= \frac{1}{q} \left(\frac{1}{q} + \frac{1}{q} \right)
$$
\n
$$
= \frac{1}{q} \left(\frac{1}{q} + \frac{1}{q} \right)
$$
\n
$$
= \frac{1}{q} \left(\frac{1}{q} \right)
$$

Lingering questions

Now, we'll explore the following ideas:

- When is gradient descent *guaranteed* to converge to a global minimum?
	- What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$
R_{\rm sq}(w_0,w_1) = \frac{1}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2
$$

When is gradient descent guaranteed to work?

Convex functions

