Lecture 13 continued

Feature engineering and
transformations

DSC 40A, Fall 2024



The Midterm Exam is on Monday, Nov 4th!

e Randomized seat assignment is in the homework - look up your seat.

e 50 minutes, on paper, no calculators or electronics.
o You are allowed to bring one two-sided page of notes.

e Content: Lectures 1-13, Homeworks 1-4, Groupworks 1-4.

* Prepare by practicing with old exam problems at practice.dsc40a.com.
o Problems are sorted by topic!
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How do we fit hypothesis functions that aren't linear in the
parameters?

e Suppose we want to fit the hypothesis function:
H(x) = woe™”
e This is not linear in terms of wg and w1, so our results for linear regression don't

apply.
e Possible solution: Try to apply a transformation.
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Coal = Wo = V, U

Transformations

e Question: Can we re-write H(x) = wpe™'* as a hypothesis function that is linear
in the parameters?
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Transformations

Solution: Create a new hypothesis function, T'(x), with parameters by and by,
where T'(z) = by + by .

This hypothesis function is related to H(x) by the relationship T'(z) = log H(z).
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T(x) = by + by is linear in its parameters, by and b;.

Use the solution to the normal equations to find B* and the relationship between b
and w to find w*. 22



Once again, let's try it out! Follow along in this notebook.
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Non-linear hypothesis functions in general

e Sometimes, it's just not possible to transform a hypothesis function to be linear in

terms of some parameters.

e |n those cases, you'd have to resort to other methods of finding the optimal
parameters.

o For example, H(x) = wy sin(w;x) can't be transformed to be linear.

o But, there are other methods of minimizing mean squared error:

1 & :
Rsq(wo,w1) = — Z(yi — wo sin(w;z))?

n

o One method: gradient descent, the topic of the next lecture!

e Hypothesis functions that are linear in the parameters are much easier to work
with.
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Which hypothesis function is not linear in the parameters?
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Roadmap

e This is the end of the content that's in scope for the Midterm Exam.

e Now, we'll introduce gradient descent, a technique for minimizing functions that
can't be minimized directly using calculus or linear algebra.

o After the Midterm Exam, we'll:
o Switch gears to probability.
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Lecture 14

Gradient Descent

DSC 40A, Fall 2024



Agenda

* Minimizing functions using gradient descent.
e Convexity.

e More examples.
o Huber loss.

o @Gradient descent with multiple variables.



T

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at g.dsc40a.com!
If the direct link doesn't work, click the " & Lecture Questions”
link in the top right corner of dsc40a.com.



The modeling recipe

1. Choose a model. 4) i "
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g gradient descent




Minimizing empirical risk

e Repeatedly, we've been tasked with minimizing the value of empirical risk
functions.
o Why? To help us find the best model parameters, h* or w™*, which help us
make the best predictions!

e We've minimized empirical risk functions in various ways.
n
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Minimizing arbitrary functions

e Assume f(t) is some differentiable single-variable function.

e When tasked with minimizing f(t¢), our general strategy has been to:
i. Find Z_{(t) the derivative of f. cat Ll T
ii. Find the input t* such that d{( *) = 0. £ e —

e However, there are cases where we can find d—{(t), but it is either difficult or

impossible to solve ‘Z( t*) =0.

f(t) =5t* —t3 —5t> +2t — 9

Ojﬁa = 7/0{-, - 2& — (Ot+2¢

e Then what?



What does the derivative of a function tell us?

* Goal: Given a differentiable function f(t), find the input t* that minimizes f(t).
e What does % f(t) mean?
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Let's go hiking!

e Suppose you're at the top of a
mountain & and need to get to
the bottom.

e Further, suppose it's really cloudy
, meaning you can only see a
few feet around you.

e How would you get to the
bottom?

steep slope
Value of D is high
So take large steps

slope is less steep
alug&f D is low

10



	lec13-blank.pdf
	lec14-blank
	lec13-blank
	lec14-blank.pdf

