Lecture 13

Feature engineering and transformations

DSC 40A, Fall 2024

Announcements

- Homework 3 is due today.
- Homework 2 scores will be available on Gradescope this weekend.
- Midterm logistics will be announced on Monday.
 - Additional office hours next week for the midterm.
 - Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

Agenda

• Feature engineering and transformations.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Multiple linear regression

The general problem

• We have n data points, $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots, (\vec{x}_n, y_n)$, where each \vec{x}_i is a feature vector of d features:

$$ec{x}_i = egin{bmatrix} x_i^{(1)} \ x_i^{(2)} \ dots \ x_i^{(d)} \end{bmatrix}$$

• We want to find a good linear hypothesis function:

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \dots + w_d x^{(d)}$$

$$= \vec{w} \cdot \operatorname{Aug}(\vec{x}) \qquad \text{Aus}(\vec{x}) = \begin{bmatrix} 1 & \chi_i^{(n)} & \chi_i^{(n)} & \chi_i^{(n)} \\ \chi_i^{(n)} & \chi_i^{(n)} & \chi_i^{(n)} \end{bmatrix}$$

The general solution

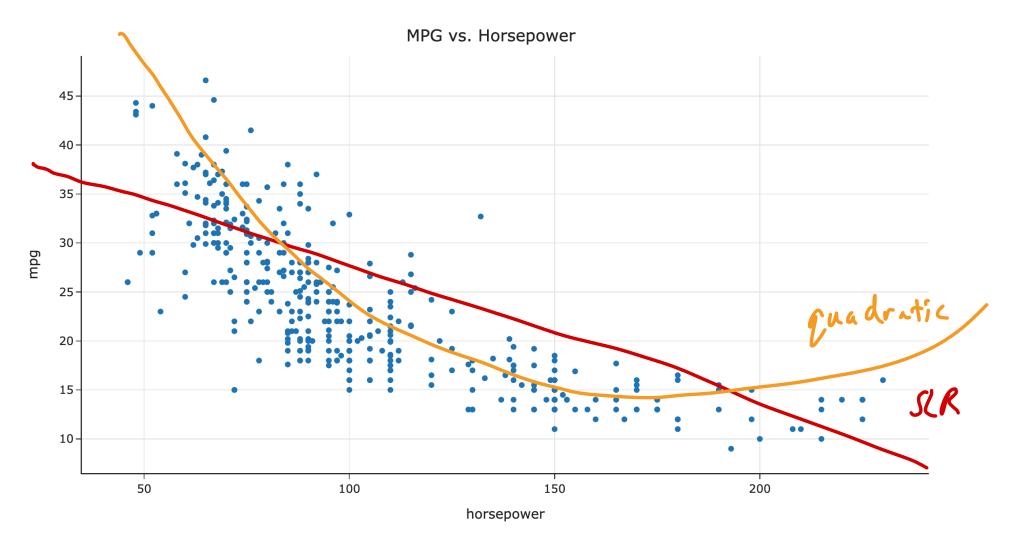
• Define the design matrix $X \in \mathbb{R}^{n \times (d+1)}$ and observation vector $\vec{y} \in \mathbb{R}^n$:

$$X = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \ dots & dots & dots & dots \ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = egin{bmatrix} \mathrm{Aug}(ec{x_1})^T \ \mathrm{Aug}(ec{x_2})^T \ dots \ \mathrm{Aug}(ec{x_n})^T \end{bmatrix} & ec{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

• Then, solve the **normal equations** to find the optimal parameter vector, \vec{w}^* :

$$oldsymbol{X}^Toldsymbol{X}oldsymbol{ec{w}}^* = oldsymbol{X}^Toldsymbol{ec{y}}$$

Feature engineering and transformations



Question: Would a linear hypothesis function work well on this dataset?

A quadratic hypothesis function

 It looks like there's some sort of quadratic relationship between horsepower and MPG in the last scatter plot. We want to try and fit a hypothesis function of the Hock (x) = Vot V1X form:

$$H(x) = w_0 + w_1 x + w_2 x^2$$

- Note that while this is quadratic in horsepower, it is linear in the parameters!
- That is, it is a linear combination of features.
- We can do that, by choosing our two "features" to be x_i and x_i^2 , respectively. \circ In other words, $x_i^{(1)}=x_i$ and $x_i^{(2)}=x_i^2$.

 - More generally, we can create new features out of existing features.

$$V_0 + V_1 \times (1) + V_2 \times (2) + V_3 \times (3) + \dots$$

A quadratic hypothesis function

(polynomial hypothesis function)

- Desired hypothesis function: $H(x) = w_0 + w_1 x + w_2 x^2$.
- The resulting design matrix looks like:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ x_1 & x_2 & x_2^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}$$

• To find the optimal parameter vector \vec{w}^* , we need to solve the **normal equations**!

$$X^T X ec{w}^* = X^T ec{y}$$

More examples

 $x^{(1)} = x^{2} \qquad x^{(3)} = x^{3}$

• What if we want to use a hypothesis function of the form:

What if we want to use a hypothesis function of the form:
$$H(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3? = w_0 + w_1 x + w_2 x^2 + w_3 x^3?$$
• What if we want to use a hypothesis function of the form:

$$H(x) = w_1 \frac{1}{x^2} + w_2 \sin x + w_3 e^x$$
?

$$X = \begin{bmatrix} \frac{1}{x_1^2} & sin(k_1) & e^{k_1} \\ \frac{1}{x_2^2} & sin(k_1) & e^{k_2} \\ \frac{1}{x_1^2} & sin(k_1) & e^{k_1} \end{bmatrix}$$

Feature engineering

- The process of creating new features out of existing information in our dataset is called **feature engineering**.
- In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
- In the future you'll learn how to do other things, like encode categorical information.
 - You'll be exposed to this in Homework 4, Problem 5!

Non-linear functions of multiple features

• Recall our earlier example of predicting sales from square footage and number of competitors. What if we want a hypothesis function of the form:

$$H(\operatorname{sqft},\operatorname{comp}) = w_0 + w_1 \cdot \operatorname{sqft} + w_2 \cdot \operatorname{sqft}^2 + w_3 \cdot \operatorname{comp} + w_4 \cdot (\operatorname{sqft} \cdot \operatorname{comp}) \ = w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 s c$$

• The solution is to choose a design matrix accordingly:

$$\mathcal{K} \in \mathbb{R}^{S}$$

$$X = \begin{bmatrix} 1 & s_{1} & s_{1}^{2} & c_{1} & s_{1}c_{1} \\ 1 & s_{2} & s_{2}^{2} & c_{2} & s_{2}c_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_{n} & s_{n}^{2} & c_{n} & s_{n}c_{n} \end{bmatrix}$$

$$\sim \mathcal{K} \in \mathbb{R}^{S}$$

$$C = \text{# of } \text{competitors}$$

Finding the optimal parameter vector, \vec{w}^*

• As long as the form of the hypothesis function permits us to write $\vec{h}=X\vec{w}$ for some X and \vec{w} , the mean squared error is:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - X ec{w}\|^2 = rac{1}{n} \|ec{e}\|^2$$

• Regardless of the values of X and \vec{y} , the value of \vec{w}^* that minimizes $R_{\rm sq}(\vec{w})$ is the solution to the **normal equations**:

$$X^T X ec{w}^* = X^T ec{y}$$

Linear in the parameters

$$H(X) = \sum_{d=0}^{D} w_d x^d = w_0 + w_1 x + w_2 x^2 + ... + w_b x^D$$

• We can fit rules like:

$$w_0+w_1x+w_2x^2$$
 $w_1e^{-x^{(1)^2}}+w_2\cos(x^{(2)}+\pi)+w_3\frac{\log 2x^{(3)}}{x^{(2)}}$ $=$ χ_{feature} This includes arbitrary polynomials.

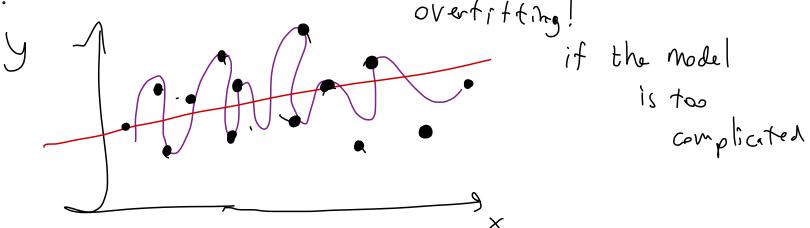
- This includes arbitrary polynomials.
- o These are all linear combinations of (just) features. H(√) = 1/6 + 1/4 | 1/2 + 1/4 | 1/

• We can't fit rules like:

 We can have any number of parameters, as long as our hypothesis function is linear in the parameters, or linear when we think of it as a function of the parameters.

Determining function form

- How do we know what form our hypothesis function should take?
- Sometimes, we know from *theory*, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a hypothesis function that will generalize well to unseen data.



Example: Amdahl's Law

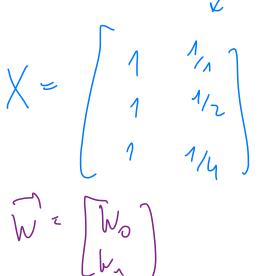
• Amdahl's Law relates the runtime of a program on *p* processors to the time to do the sequential and nonsequential parts on one processor.

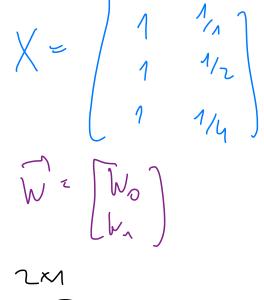
ind nonsequential parts on one processor.
$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p} \qquad \text{code that can't}$$

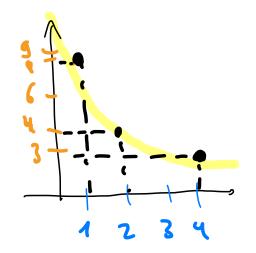
• Collect data by timing a program with varying numbers of processors:

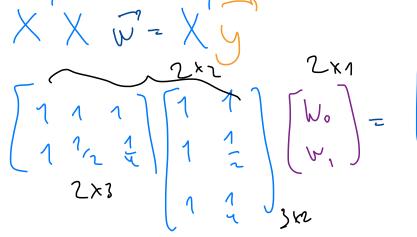
Processors	Time (Hours)
1	8
2	4
4	3

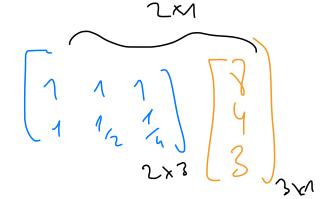
Processors	Time (Hours)
1	8
2	4
4	3

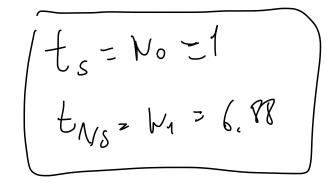












How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

$$H(x) = w_0 e^{w_1 x}$$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- Possible solution: Try to apply a transformation.

Transformations

• Question: Can we re-write $H(x)=w_0e^{w_1x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x) = \log H(x)$.
- ullet $ec{b}$ is related to $ec{w}$ by $b_0 = \log w_0$ and $b_1 = w_1$.
- ullet Our new observation vector, $ec{z}$, is $egin{bmatrix} \log y_1 \\ \log y_2 \\ \ldots \\ \log y$
- $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - \circ For example, $H(x) = w_0 \sin(w_1 x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2.$$

- One method: gradient descent, the topic of the next lecture!
- Hypothesis functions that are linear in the parameters are much easier to work with.

Question 😕

Answer at q.dsc40a.com

Which hypothesis function is **not** linear in the parameters?

$$ullet$$
 A. $H(ec{x}) = w_1(x^{(1)}x^{(2)}) + rac{w_2}{x^{(1)}} \mathrm{sin}\left(x^{(2)}
ight)$

$$ullet$$
 B. $H(ec x)=2^{w_1}x^{(1)}$

• C.
$$H(\vec{x}) = \vec{w} \cdot \operatorname{Aug}(\vec{x})$$

$$ullet$$
 D. $H(ec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$

• E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
 - Switch gears to probability.