Lecture 13

Feature engineering and transformations

DSC 40A, Fall 2024

Announcements

- Homework 3 is due today.
- Homework 2 scores will be available on Gradescope this weekend.
- Midterm logistics will be announced on Monday.
	- \circ Additional office hours next week for the midterm.
	- Prepare by practicing with old exam problems at practice.dsc40a.com.
	- o Problems are sorted by topic!

Agenda

Feature engineering and transformations.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "⁵ Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Multiple linear regression

The general problem

• We have n data points, $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots, (\vec{x}_n, y_n)$, where each \vec{x}_i is a feature vector of d features:

$$
\vec{x_i} = \begin{bmatrix} x_i^{(1)} \\ x_i^{(2)} \\ \vdots \\ x_i^{(d)} \end{bmatrix} \quad \begin{matrix} \boldsymbol{\zeta} \\ \boldsymbol{\zeta} \\ \boldsymbol{\zeta} \end{matrix} \in \mathcal{R}^{\boldsymbol{\Lambda}}
$$

• We want to find a good linear hypothesis function:

$$
H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)}
$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$ $\mathcal{A}_{\mathcal{U}}(\vec{x}) = \begin{bmatrix} 1 & x_0^{(n)} & x_1^{(n)} & \ldots & x_d^{(d)} \end{bmatrix}$

The general solution

• Define the design matrix $X \in \mathbb{R}^{n \times (d+1)}$ and observation vector $\vec{y} \in \mathbb{R}^n$:

$$
X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \ldots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \ldots & x_2^{(d)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n^{(1)} & x_n^{(2)} & \ldots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \text{Aug}(\vec{x_1})^T \\ \text{Aug}(\vec{x_2})^T \\ \vdots \\ \text{Aug}(\vec{x_n})^T \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}
$$

• Then, solve the **normal equations** to find the optimal parameter vector, \vec{w}^* :

 $X^TX\vec w^*=X^T\vec y$

Feature engineering and transformations

Question: Would a linear hypothesis function work well on this dataset?

A quadratic hypothesis function

• It looks like there's some sort of quadratic relationship between horsepower and MPG in the last scatter plot. We want to try and fit a hypothesis function of the $H_{sd}(x) = W_o + W_1x$ form:

$$
H(x)=w_0+w_1x+w_2x^2\\
$$

- \circ Note that while this is quadratic in horsepower, it is linear in the parameters!
- \circ That is, it is a linear combination of features.
- We can do that, by choosing our two "features" to be x_i and x_i^2 , respectively.

 In other words, $x_i^{(1)} = x_i$ and $x_i^{(2)} = x_i^2$.
	- More generally, we can create new features out of existing features.

$$
V_0 + V_1 \times^{(1)} + V_2 \times^{(2)} + V_3 \times^{(3)} + \dots
$$

A quadratic hypothesis function

- (polynomial hypothesis function)
- Desired hypothesis function: $H(x) = w_0 + w_1 x + w_2 x^2$.
- The resulting design matrix looks like:

• To find the optimal parameter vector \vec{w}^* , we need to solve the normal equations!

$$
X^TX\vec w^*=X^T\vec y
$$

$$
\vec{v}^* = (x^T x)^{-1} x^T y^0
$$

More examples

 \bullet

• What if we want to use a hypothesis function of the form:

 $\left(\frac{1}{x_{h}^{2}}\sin(k_{h})e^{k_{h}^{2}}\right)$

$$
H(x) = w_0 + w_1x + w_2x^2 + w_3x^3 = w_0 + \mu_1k^2 + w_1k^3
$$

\n
$$
\chi = \begin{bmatrix} 1 & x_1 & x_1 & x_1 \\ x_2 & x_2 & x_2 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & x_n & x_n & x_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}
$$

\nWhat if we want to use a hypothesis function of the form:
\n
$$
H(x) = w_1 \frac{1}{x^2} + w_2 \sin x + w_3 e^x
$$
 in turn in particular multiplication
\n
$$
\chi = \begin{bmatrix} \frac{1}{x_1} & \sin(kx) & e^{kx} \\ \frac{1}{x_2} & \sin(kx) & e^{kx} \\ \frac{1}{x_3} & \frac{1}{x_4} & \frac{1}{x_5} \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix}
$$

 $x^{(1)} = x^{1}$ $x^{(3)} = x^{3}$

 \blacktriangleright

 $\overline{}$

Feature engineering

- The process of creating new features out of existing information in our dataset is called **feature engineering**.
- In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
- In the future you'll learn how to do other things, like encode categorical information.
	- You'll be exposed to this in Homework 4, Problem 5!

 $w\in lR^{s}$

Recall our earlier example of predicting sales from square footage and number of competitors. What if we want a hypothesis function of the form:

on-linear functions of multiple features
\n• Recall our earlier example of predicting sales from square footage and number of
\ncompetitors. What if we want a hypothesis function of the form:
\n
$$
H(\text{sqft}, \text{comp}) = w_0 + w_1 \cdot \text{sqft} + w_2 \cdot \text{sqft}^2 + w_3 \cdot \text{comp} + w_4 \cdot (\text{sqft} \cdot \text{comp})
$$
\n
$$
= w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 s c
$$

• The solution is to choose a design matrix accordingly:

$$
X = \begin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1c_1 \\ 1 & s_2 & s_2^2 & c_2 & s_2c_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_n & s_n^2 & c_n & s_n c_n \end{bmatrix}_{\forall X \text{ S}} \begin{matrix} \text{S =} \text{syst} \\ \text{S =} \text{syst} \\ \text{C =} \text{H of} \\ \text{C =} \text{M of
$$

Finding the optimal parameter vector, \vec{w}^*

• As long as the form of the hypothesis function permits us to write $\vec{h} = X\vec{w}$ for some X and \vec{w} , the mean squared error is:

$$
R_{\mathrm{sq}}(\vec{w}) = \frac{1}{n}\|\vec{y} - X\vec{w}\|^2 \, \supset \, \frac{{\color{black} 4}}{{\color{black} \Lambda}}\|\vec{e}\|^{\color{black} \Lambda}
$$

• Regardless of the values of X and \vec{y} , the value of \vec{w}^* that minimizes $R_{sa}(\vec{w})$ is the solution to the **normal equations**:

$$
X^TX\vec w^*=X^T\vec y
$$

$\mathcal{V}% _{M_{1},M_{2}}^{\alpha,\beta}(\varepsilon)$ $H(x) = \sum_{w} w_x x^d = w_x + w_x x^2 + ... + w_y x^0$ $d \tilde{\cdot} \mathcal{O}$ $\frac{0}{\sqrt{(\chi)}} = \frac{0}{\sqrt{(\chi)}} \log \chi^{\chi}$
 $\frac{e^{-x^{(1)^2}}}{\sqrt{(\chi^2 + w^2)}} + w_2 \cos(x^{(2)} + \pi)$
mials. $e^{-x^{(1)^2}} + w_2 \cos(x^{(2)} + \pi) + w_3 \frac{\log 2x^{(3)}}{x^{(2)}} \approx \sqrt{\frac{1}{\sqrt{2}}}$

mials. Features $\frac{1}{\sqrt{2}} \in \mathbb{N}^3$

Linear in the parameters

We can fit rules like:

This includes arbitrary polynomials.

- These are all linear combinations of (just) features. $\begin{array}{ccc} \pm(\varpi)\cdot & \varkappa\cdot\end{array}$
- We can't fit rules like: nonline in M_{λ} in M_{λ}
These are **not** linear combinations of just features! $A_{\lambda} g(\tilde{x})$. H $W(x^2) = W_0 + W_1 + W_2 + W_3$
 $w_0 + e^{w_1x}$ $w_0 + \sin(w_1x^{(1)} + w_2x^{(2)})$ can't write as $\lim_{\delta\to 0} f(\overline{x}^{\circ})\cdot 1$
- We can have any number of parameters, as long as our hypothesis function is **linear in the parameters**, or linear when we think of it as a function of the parameters. 16

 $=\times -$

 M_{1} M_{2} M_{1} M_{2}

- How do we know what form our hypothesis function should take?
- Sometimes, we know from *theory*, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
	- \circ Remember, the goal is to find a hypothesis function that will generalize well to unseen data.

Example: Amdahl's Law

- Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor. - > code that can be
- Collect data by timing a program with varying numbers of processors: parallelized $H(p) =$

Example: Fitting $H(x) = w_0 + w_1 \cdot \frac{t}{x}$

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

 $H(x) = w_0 e^{w_1 x}$

- This is not linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- **Possible solution**: Try to apply a **transformation**.

Transformations

• Question: Can we re-write $H(x) = w_0 e^{w_1 x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, $T(x)$, with parameters b_0 and b_1 , where $T(x) = b_0 + b_1x$.
- This hypothesis function is related to $H(x)$ by the relationship $T(x) = \log H(x)$.
- \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.

• Our new observation vector, \vec{z} , is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ \cdots \\ \log y_n \end{bmatrix}$.

- $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* . 22

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
	- \circ For example, $H(x) = w_0 \sin(w_1 x)$ can't be transformed to be linear.
	- But, there are other methods of minimizing mean squared error:

$$
R_{\rm sq}(w_0,w_1) = \frac{1}{n}\sum_{i=1}^n (y_i - w_0 \sin(w_1x))^2
$$

- One method: **gradient descent**, the topic of the next lecture! \bigcirc
- Hypothesis functions that are linear in the parameters are much easier to work with. 24

Answer at q.dsc40a.com

Which hypothesis function is **not** linear in the parameters?

- A. $H(\vec{x}) = w_1(x^{(1)}x^{(2)}) + \frac{w_2}{x^{(1)}}\sin(x^{(2)})$
- B. $H(\vec{x}) = 2^{w_1} x^{(1)}$
- C. $H(\vec{x}) = \vec{w} \cdot \text{Aug}(\vec{x})$
- D. $H(\vec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$
- E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
	- Switch gears to **probability**.