Lecture 12

Multiple Linear Regression

DSC 40A, Fall 2024



Agenda

e Recap: regression and linear algebra
e Multiple linear regression.

e |nterpreting parameters.
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Regression and linear algebra (Solution 1)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:
1 2
Jeree
1 a9 ~ Wy = \# PJ.
X = . . w= [wll_p‘lO'&
R
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e How do we make the hypothesis vector, h = X, as close to 7 as possible? Use

the parameter vector w*:
TTJ* _ (XTX)—lXT

e Solution: We chose * so that hb* = X" is the projection of 1 onto the span of
the columns of the design matrix, X and minimized the length of the projection
error ||e|| = ||y — Xw|.



Regression and linear algebra (Solution 2)

o Define the design matrix X € R™*?, observation vector , and parameter
vector w € R? as:

U 2
1 x wo ;'AJU'-LFI.
x=|, a2
. . w]_ J]szb
1 z,
e How do we minimize the mean squared error Ry, (w) = + || — Xw||? ? Using

calculus the optimal paramter vector w* is:
’lf}* _ (XTX)—lXT

e Solution: we computed the gradient of Rg,(w), set it to zero and solved for w.

V.. R:l,(':) =0 = .+
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departure_hour day_of _month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.



Incorporating multiple features
* |n the context of the commute times dataset, the simple linear regression model
we fit was of the form: / one I‘r\@u\~ Uari‘a’ula

pred. commute = H(departure hour)
= wy + w; - departure hour

e Now, we'll try and fit a multiple linear regression model of the form:
Av'nl»‘)ll.s

wo laput v
pred. commute = H(departure hour) o b - /
= wq + w; - departure hour + ws - day of month

e Linear regression with multiple features is called multiple linear regression.

e How do we find w, wi, and w3? Hﬁf”"’fusis ' N\W\*'f\'- \n‘nu\r* ml)r'-ﬂ"w rods)
loss® Stbo&')‘ Qrroy
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Geometric interpretation wie

21
, , S
e The hypothesis function: /f\
H (departure hour) = wy + w; - departure hour
looks like a line in 2D. e
‘a
e Questions: D'f'\"*‘*"{_'w

o How many dimensions do we need to graph the hypothesis function:

H (departure hour) = wy + w; - departure hour 4+ wy - day of month

o What is the shape of the hypothesis function?
Z2=0X+h Y+ C
) flavu.



Commute Time vs. Departure Hour and Day of Month
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Our new hypothesis function is a plane in 3D!
Our goal is to find the plane of best fit that pierces through the cloud of points.
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The setup

e Suppose we have the following dataset.
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departure_hour day of month minutes
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e We can represent each day with a feature vector, z:
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The hypothesis vector X W ..vm""}"
cnhd—-% Jasiyh \,;,c;l-vﬂ'~
e When our hypothesis function is of the form: Mot

H (departure hour) = wg + w; - departure hour + ws - day of month

the hypothesis vector h € R™ can be written as:

_ _ )K«
H (departure hour,, day) 1 Ldeparture hour, dayg .
w
7 H (departure hour,, day,) 1  departure hour, day, ’
p— p— w].
Rt\X“
el | H(departure hour,,,day,,)_ 1 departure hour,, day, |

nxl
l—l ( )*_(l\r’\\:\\r‘(- \\D\»V' 0\'\31) = X : t/]

Aﬂ—f\y\ maTrX
A dapntury du
C ( 33[ ::::\: V°+ W, M“-'\\*& b‘ob\v‘q_ + L’L‘ A&\B—L
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Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R"*
and observation vector

1 departure hour; day; |
1 departure hour, day,

1 departure hour, day,, |

e Then, all we need to do is solve the normal equations:
T — % T
X" Xw =X W | W,
If X7 X is invertible, we know the solution is: W,

TTJ* _ (XTX)—lXT



Ka = Azt ddbe eo}a\'
Notation for multiple linear regression )@ —~ 1+ ferure W my didy
e We will need to keep track of multiple features for every individual in our dataset.
o In practice, we could have hundreds or thousands of features!

e As before, subscripts distinguish between individuals in our dataset. We have n
individuals, also called training examples.

o Superscripts distinguish between features. We have d features. )@, )@/ - Xlﬁ)
departure hour: V) £ IR'\
day of month: z% S R"

Think of :13(]1\) 2(2) .. as new variable names, like new letters. (Colkm of x)
\ et (D tha vahor of the He Aadure
ok <X Xq Por the Ush dnde pointe

(rov of X) 14



Augmented feature vectors

e The augmented feature vector Aug(z) is the vector obtained by adding a 1 to the
front of feature vector z: HN"“"“N

e
(. (1)3 ¥
L P .&of,d:\n T 1)
2 (2 7
T = |0 Aug(z) = (©°
o Eempervrune . :
Lz D4 howes sleph
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( &t )

e Then, our hypothe5|s functlon |
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The general problem

e We have n data points, (53’1, ), (:7:’2, ), e (fn,
where each Z; is a feature vector of d features:
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e We want to find a good linear hypothesis function:

).

A

Aatnset (X,\J3
()\‘M’A/ (x'l-, 31)
o ( X.‘,&h)
X; ER

S ca\\‘\V‘s

L

H(z) = wo + wlx(l) =+ ’w233(2> + ...+ wda:(d)

= w - Aug(z)

+
How do we End Ve, Vl,\»/f,¢../l~/

A
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The general solution

e Define the design matrjx\X c R™(@+1) and observation vector :
g 1 7 2 d) | . _ -
&"}"W e (|1 xg /:c(l)\ $(1,)> dAug(:Bl)f\)
L
e eI d e

X — ° ° ° . — ° —

AV

e Then, solve the nTmal equations to find the optimal parameter vector, w*:

1\ | @ @|  |Aug(z,)T

XT'Xxw*= X"

‘ : e,,f&
,(ol‘ h\\

A )\ok"‘?m&rs



Terminology for parameters
e With d features, w has d + 1 entries.

* wy Is the bias, also known as the intercept.

e wi,Ws,...,Wq each give the weight, or coefficient, or slope, of a feature.

H(Z) = wo + w1z + wez® + ... + wgz?
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Example: Predicting sales
7

e For each of #f stores, we have: N

RIgE

(

()
U

o |net saies, &

o square feert,

olinventory,

o|advertising expenditure, X

o|district size, and

o |\number of competing stores.

e Goal: Predict net sales given the other five features.

e To begin, we'll start trying to fit the hygothesis function to predict sales:

H (square feet, competitors) = wg + w; - square feet + ws - competitors

d=1
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T

Question =

Answer at g.dsc40a.com

H (square feet, competitors) = wgy + w; - square feet + ws - competitors

L ——

(- — f———

What will be the signs of w] and w3?

e A w] + way+

e B.wj + Wy —
e A wj — w5+
e A wj — Wy —

Let's find out! Follow along in this notebook.
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T

Question =

Answer at q.dsc40a.com

Which feature is most "important"?

e A.square feet: w] = 16.202
e B. competitors: ws = —5.311
e C.inventory: w; = 0.175

e D. advertising: w3 = 11.526
e E.district size: wy = 13.580



S (400 lo‘\xl;s)-—'-f—y— QOO%K} Mov)
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Which features are most "important"?

e The most important feature is not necessarily the feature with largest magnitude
weight.
e Features are measured in different units, i.e. different scales.

o Suppose | fit one hypothesis function, H, with sales in US dollars, and
another hypothesis function, Hs, with sales in Japanese yen (1 USD ~ 157
yen).

o Sales is just as important in both hypothesis functions.

o But the weight of sales in H1 will be 157 times larger than the weight of sales
N Hg.
e Solution: If you care about the interpretability of the resulting weights, standardize

each feature before performing regression, i.e. convert each feature to standard
units.



Standard units

e Recall: to convert a feature 1, xo, ..., x, to standard units, we use the formula:

e Example: 1,7,7,09.

LE7TH749 _ 24 _ g

4 4
o Standard deviation:

o Mean:

SD:\/1((1—6)2+(7—6)2+(7—6)2+(9—6)2): 1ls6=3

4 4
o Standardized data:
1—-06 5) 7T—6 1 1 9—-6
]. —> = \|—— 7 — = |— 7 — —> —
3 3 3 3 ~l3l 97 3




Standard units for multiple linear regression

e The result of standardizing each feature (separately!) is that the units of each
feature are on the same scale.

o There's no need to standardize the outcome (net sales), since it's not being
compared to anything.

o Also, we can't standardize the column of all 1s.

* Then, solve the normal equations. The resulting wy, wi, . .., w}; are called the
standardized regression coefficients.

e Standardized regression coefficients can be directly compared to one another.

e Note that standardizing each feature does not change the MSE of the resulting
hypothesis function!
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Once again, let's try it out! Follow along in this notebook.
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Summary
e The normal equations can be used to solve multiple linear regression problems.

e |nterpret the parameters as weights. Signs give meaningful information. Can only
compare weight magnitude if data is standardized.

e On Friday: nonlinear features!

27



