Lecture 12

Multiple Linear Regression

1

DSC 40A, Fall 2024

Agenda

- Recap: regression and linear algebra
- Multiple linear regression.
- Interpreting parameters.

Recap: Regression and linear algebra

Regression and linear algebra (Solution 1)

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^{n}$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$
X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}
$$

• How do we make the hypothesis vector, $\vec{h} = X\vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^* :

$$
\vec{w}^* = (X^T X)^{-1} X^T \vec{y}
$$

• Solution: We chose \vec{w}^* so that $\vec{h}^* = X\vec{w}^*$ is the projection of \vec{y} onto the span of **the columns of the design matrix,** \boldsymbol{X} and minimized the length of the projection error $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$.

4

Regression and linear algebra (Solution 2)

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^{n}$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$
X=\begin{bmatrix}1&x_1\\1&x_2\\ \vdots&\vdots\\1&x_n\end{bmatrix}\qquad \vec y=\begin{bmatrix}y_1\\y_2\\ \vdots\\y_n\end{bmatrix}\qquad \vec w=\begin{bmatrix}w_0\\w_1\end{bmatrix}
$$

• How do we minimize the mean squared error $R_{sq}(\vec{w}) = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$? Using calculus the optimal paramter vector \vec{w}^* is:

$$
\vec{w}^* = (X^TX)^{-1}X^T\vec{y}
$$

• Solution: we computed the gradient of $R_{\rm{sa}}(\vec{w})$, set it to zero and solved for \vec{w} .

Multiple linear regression

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

> pred. commute $=$ H (departure hour) $w_0 + w_1 \cdot$ departure hour

- Now, we'll try and fit a multiple linear regression model of the form: pred. commute $= H$ (departure hour) $w_0 + w_1 \cdot$ departure hour $w_2 \cdot$ day of month
- Linear regression with **multiple** features is called **multiple linear regression**.
- How do we find w_0^* , w_1^* , and w_2^* ?

Geometric interpretation

• The hypothesis function:

```
H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour}
```
looks like a **line** in 2D.

- **Questions**:
	- How many dimensions do we need to graph the hypothesis function: $H(\text{departure hour}) = w_0 + w_1 \cdot \text{ departure hour} + w_2 \cdot \text{day of month}$
	- What is the shape of the hypothesis function?

Commute Time vs. Departure Hour and Day of Month

Our new hypothesis function is a **plane** in 3D! Our goal is to find the plane of best fit that pierces through the cloud of points. 10

The setup

Suppose we have the following dataset.

• We can represent each day with a feature vector, \vec{x} :

The hypothesis vector

 \vec{h}

When our hypothesis function is of the form:

 $H(\text{departure hour}) = w_0 + w_1 \cdot \text{ departure hour} + w_2 \cdot \text{day of month}$ the hypothesis vector $\vec{h} \in \mathbb{R}^n$ can be written as: $\lceil H(\text{departure hour}_1, \text{day}_1) \rceil$ $\lceil 1 \text{ departure hour}_1 \text{day}_1 \rceil$

$$
= \begin{bmatrix} H(\text{departure hour}_2,\text{day}_2) \\ \dots \\ H(\text{departure hour}_n,\text{day}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{ departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{ departure hour}_n & \text{day}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}
$$

Finding the optimal parameters

• To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $X \in \mathbb{R}^{n \times 3}$ and **observation vector** $\vec{y} \in \mathbb{R}^n$:

$$
X = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \cdots & \cdots & \cdots \\ 1 & \text{ departure hour}_n & \text{day}_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} \text{commute time}_1 \\ \text{commute time}_2 \\ \vdots \\ \text{commute time}_n \end{bmatrix}
$$

Then, all we need to do is solve the **normal equations**:

 $\boldsymbol{X}^T\boldsymbol{X}\vec{\boldsymbol{w}}^* = \boldsymbol{X}^T\vec{\boldsymbol{y}}$

If $X^T X$ is invertible, we know the solution is:

$$
\vec{w}^* = (X^T X)^{-1} X^T \vec{y}
$$

Notation for multiple linear regression

- We will need to keep track of multiple features for every individual in our dataset.
	- \circ In practice, we could have hundreds or thousands of features!
- As before, subscripts distinguish between individuals in our dataset. We have n individuals, also called **training examples**.
- \bullet Superscripts distinguish between **features**. We have d features.

departure hour: $x^{(1)}$ day of month: $x^{(2)}$

Think of $x^{(1)}$, $x^{(2)}$, ... as new variable names, like new letters.

Augmented feature vectors

• The augmented feature vector $\text{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$
\vec{x} = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \text{Aug}(\vec{x}) = \begin{bmatrix} 1 \\ x^{(1)} \\ \vdots \\ x^{(d)} \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}
$$

• Then, our hypothesis function is:

$$
\begin{aligned} H(\vec{x}) &= w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)} \\ &= \vec{w} \cdot \mathrm{Aug}(\vec{x}) \end{aligned}
$$

The general problem

• We have n data points, $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \ldots, (\vec{x}_n, y_n)$, where each \vec{x}_i is a feature vector of d features:

$$
\vec{x_i} = \begin{bmatrix} x_i^{(1)} \\ x_i^{(2)} \\ \vdots \\ x_i^{(d)} \end{bmatrix}
$$

We want to find a good linear hypothesis function:

$$
\begin{aligned} H(\vec{x}) &= w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)} \\ &= \vec{w} \cdot \mathrm{Aug}(\vec{x}) \end{aligned}
$$

The general solution

• Define the design matrix $X \in \mathbb{R}^{n \times (d+1)}$ and observation vector $\vec{y} \in \mathbb{R}^n$:

$$
X = \begin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \ldots & x_1^{(d)} \\ 1 & x_2^{(1)} & x_2^{(2)} & \ldots & x_2^{(d)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n^{(1)} & x_n^{(2)} & \ldots & x_n^{(d)} \end{bmatrix} = \begin{bmatrix} \text{Aug}(\vec{x_1})^T \\ \text{Aug}(\vec{x_2})^T \\ \vdots \\ \text{Aug}(\vec{x_n})^T \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}
$$

• Then, solve the **normal equations** to find the optimal parameter vector, \vec{w}^* :

 $X^TX\vec w^*=X^T\vec y$

Terminology for parameters

- With d features, \vec{w} has $d+1$ entries.
- \bullet w_0 is the bias, also known as the **intercept**.
- \bullet w_1, w_2, \ldots, w_d each give the weight, or **coefficient**, or **slope**, of a feature.

$$
H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)}
$$

Interpreting parameters

Example: Predicting sales

- For each of 26 stores, we have:
	- \circ net sales,
	- \circ square feet,
	- o inventory,
	- advertising expenditure,
	- \circ district size, and
	- \circ number of competing stores.
- **Goal**: Predict net sales given the other five features.
- To begin, we'll start trying to fit the hypothesis function to predict sales: $H(\text{square feet}, \text{compactitors}) = w_0 + w_1 \cdot \text{square feet} + w_2 \cdot \text{components}$

Answer at [q.dsc40a.com](https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform)

 $H(\text{square feet}, \text{compactitors}) = w_0 + w_1 \cdot \text{square feet} + w_2 \cdot \text{components}$

What will be the signs of w_1^* and w_2^* ?

- A. $w_1^* + w_2^* +$
- B. $w_1^* + w_2^* -$
- A. $w_1^* w_2^* +$
- A. $w_1^* w_2^* -$

Let's find out! Follow along in [this notebook](http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture12/lec12_code.ipynb).

Answer at [q.dsc40a.com](https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform)

Which feature is most "important"?

- A. square feet: $w_1^* = 16.202$
- B. competitors: $w_2^* = -5.311$
- C. inventory: $w_2^* = 0.175$
- D. advertising: $w_3^* = 11.526$
- E. district size: $w_4^* = 13.580$

Which features are most "important"?

- The most important feature is **not necessarily** the feature with largest magnitude weight.
- Features are measured in different units, i.e. different scales.
	- \circ Suppose I fit one hypothesis function, H_1 , with sales in US dollars, and another hypothesis function, H_2 , with sales in Japanese yen (1 USD \approx 157 yen).
	- \circ Sales is just as important in both hypothesis functions.
	- \circ But the weight of sales in H_1 will be 157 times larger than the weight of sales in H_2 .
- **Solution**: If you care about the interpretability of the resulting weights, **standardize** each feature before performing regression, i.e. convert each feature to standard units. ²³

Standard units

• Recall: to convert a feature x_1, x_2, \ldots, x_n to standard units, we use the formula:

$$
x_{\,i\,\,(\rm su)}=\frac{x_{\,i}-\bar{x}}{\sigma_x}
$$

Example: 1, 7, 7, 9.

• Mean:
$$
\frac{1+7+7+9}{4} = \frac{24}{4} = 6.
$$

 \circ Standard deviation:

$$
\text{SD} = \sqrt{\frac{1}{4}((1-6)^2 + (7-6)^2 + (7-6)^2 + (9-6)^2)} = \sqrt{\frac{1}{4} \cdot 36} = 3
$$

 \circ Standardized data:

$$
1\mapsto \frac{1-6}{3}=\boxed{-\frac{5}{3}} \qquad 7\mapsto \frac{7-6}{3}=\boxed{\frac{1}{3}} \qquad 7\mapsto \boxed{\frac{1}{3}} \qquad 9\mapsto \frac{9-6}{3}=\boxed{1}_{24}
$$

Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
	- \circ There's no need to standardize the outcome (net sales), since it's not being compared to anything.
	- \circ Also, we can't standardize the column of all 1s.
- Then, solve the normal equations. The resulting $w_0^*, w_1^*, \ldots, w_d^*$ are called the **standardized regression coefficients**.
- Standardized regression coefficients can be directly compared to one another.
- Note that standardizing each feature **does not** change the MSE of the resulting hypothesis function!

Once again, let's try it out! Follow along in [this notebook](http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-fa&subPath=lectures/lecture12/lec12_code.ipynb).

Summary

- The normal equations can be used to solve multiple linear regression problems.
- Interpret the parameters as weights. Signs give meaningful information. Can only compare weight magnitude if data is standardized.
- On Friday: nonlinear features!