Lecture 12

# Multiple Linear Regression

DSC 40A, Fall 2024

# Agenda

- Recap: regression and linear algebra
- Multiple linear regression.
- Interpreting parameters.

Recap: Regression and linear algebra

### Regression and linear algebra (Solution 1)

• Define the design matrix  $X \in \mathbb{R}^{n \times 2}$ , observation vector  $\vec{y} \in \mathbb{R}^n$ , and parameter vector  $\vec{w} \in \mathbb{R}^2$  as:

$$egin{aligned} oldsymbol{X} &= egin{bmatrix} 1 & oldsymbol{x}_1 \ 1 & oldsymbol{x}_2 \ dots & dots \ 1 & oldsymbol{x}_n \end{bmatrix} & oldsymbol{ec{y}} &= egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} & oldsymbol{ec{w}} &= egin{bmatrix} w_0 \ w_1 \end{bmatrix} \end{aligned}$$

• How do we make the hypothesis vector,  $\vec{h}=X\vec{w}$ , as close to  $\vec{y}$  as possible? Use the parameter vector  $\vec{w}^*$ :

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

• Solution: We chose  $\vec{w}^*$  so that  $\vec{h}^* = X\vec{w}^*$  is the projection of  $\vec{y}$  onto the span of the columns of the design matrix, X and minimized the length of the projection error  $||\vec{e}|| = ||\vec{y} - X\vec{w}||$ .

#### Regression and linear algebra (Solution 2)

• Define the design matrix  $X \in \mathbb{R}^{n \times 2}$ , observation vector  $\vec{y} \in \mathbb{R}^n$ , and parameter vector  $\vec{w} \in \mathbb{R}^2$  as:

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

• How do we minimize the mean squared error  $R_{\rm sq}(\vec w)=rac{1}{n}\|\vec y-X\vec w\|^2$ ? Using calculus the optimal paramter vector  $\vec w^*$  is:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

• Solution: we computed the gradient of  $R_{\rm sq}(\vec{w})$ , set it to zero and solved for  $\vec{w}$ .

# Multiple linear regression

|   | departure_hour | day_of_month | minutes |
|---|----------------|--------------|---------|
| 0 | 10.816667      | 15           | 68.0    |
| 1 | 7.750000       | 16           | 94.0    |
| 2 | 8.450000       | 22           | 63.0    |
| 3 | 7.133333       | 23           | 100.0   |
| 4 | 9.150000       | 30           | 69.0    |
|   | •••            | •••          |         |

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure\_hour') for making predictions.

#### Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

$$ext{pred. commute} = H( ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour}$$

• Now, we'll try and fit a multiple linear regression model of the form:

```
	ext{pred. commute} = H(	ext{departure hour}) \ = w_0 + w_1 \cdot 	ext{departure hour} + w_2 \cdot 	ext{day of month}
```

- Linear regression with multiple features is called multiple linear regression.
- How do we find  $w_0^*$ ,  $w_1^*$ , and  $w_2^*$ ?

#### Geometric interpretation

• The hypothesis function:

$$H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour}$$

looks like a line in 2D.

#### • Questions:

• How many dimensions do we need to graph the hypothesis function:

$$H(\text{departure hour}) = w_0 + w_1 \cdot \text{departure hour} + w_2 \cdot \text{day of month}$$

• What is the shape of the hypothesis function?

#### Commute Time vs. Departure Hour and Day of Month



Our new hypothesis function is a **plane** in 3D!

Our goal is to find the **plane** of best fit that pierces through the cloud of points.

#### The setup

• Suppose we have the following dataset.

|     | departure_hour | day_of_month | minutes |
|-----|----------------|--------------|---------|
| row |                |              |         |
| 1   | 8.45           | 22           | 63.0    |
| 2   | 8.90           | 28           | 89.0    |
| 3   | 8.72           | 18           | 89.0    |

• We can represent each day with a **feature vector**,  $\vec{x}$ :

## The hypothesis vector

• When our hypothesis function is of the form:

 $H( ext{departure hour})=w_0+w_1\cdot ext{departure hour}+w_2\cdot ext{day of month}$  the hypothesis vector  $ec{h}\in\mathbb{R}^n$  can be written as:

$$\vec{h} = \begin{bmatrix} H(\text{departure hour}_1, \text{day}_1) \\ H(\text{departure hour}_2, \text{day}_2) \\ \dots \\ H(\text{departure hour}_n, \text{day}_n) \end{bmatrix} = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

#### Finding the optimal parameters

• To find the optimal parameter vector,  $\vec{w}^*$ , we can use the **design matrix**  $X \in \mathbb{R}^{n \times 3}$  and **observation vector**  $\vec{y} \in \mathbb{R}^n$ :

$$X = egin{bmatrix} 1 & \operatorname{departure\ hour}_1 & \operatorname{day}_1 \ 1 & \operatorname{departure\ hour}_2 & \operatorname{day}_2 \ \dots & \dots & \dots \ 1 & \operatorname{departure\ hour}_n & \operatorname{day}_n \end{bmatrix} \qquad ec{y} = egin{bmatrix} \operatorname{commute\ time}_1 \ \operatorname{commute\ time}_2 \ \vdots \ \operatorname{commute\ time}_n \end{bmatrix}$$

• Then, all we need to do is solve the **normal equations**:

$$X^T X ec{w}^* = X^T ec{y}$$

If  $X^TX$  is invertible, we know the solution is:

$$ec{w}^* = (X^TX)^{-1}X^Tec{y}$$

### Notation for multiple linear regression

- We will need to keep track of multiple features for every individual in our dataset.
  - In practice, we could have hundreds or thousands of features!
- As before, subscripts distinguish between individuals in our dataset. We have n
  individuals, also called training examples.
- ullet Superscripts distinguish between **features**. We have d features.

departure hour:  $x^{(1)}$ 

day of month:  $x^{(2)}$ 

Think of  $x^{(1)}$ ,  $x^{(2)}$ , ... as new variable names, like new letters.

#### Augmented feature vectors

• The augmented feature vector  $\operatorname{Aug}(\vec{x})$  is the vector obtained by adding a 1 to the front of feature vector  $\vec{x}$ :

$$ec{oldsymbol{x}} = egin{bmatrix} oldsymbol{x}^{(1)} \ oldsymbol{x}^{(2)} \ oldsymbol{z}^{(d)} \end{bmatrix} \qquad \operatorname{Aug}(ec{oldsymbol{x}}) = egin{bmatrix} 1 \ oldsymbol{x}^{(1)} \ oldsymbol{x}^{(2)} \ oldsymbol{z}^{(2)} \ oldsymbol{z}^{(d)} \end{bmatrix} \qquad ec{oldsymbol{w}} = egin{bmatrix} oldsymbol{w}_0 \ oldsymbol{w}_1 \ oldsymbol{w}_2 \ oldsymbol{z}^{(d)} \ oldsymbol{z}^{(d)} \end{bmatrix}$$

• Then, our hypothesis function is:

$$egin{aligned} H(ec{oldsymbol{x}}) &= w_0 + w_1 oldsymbol{x}^{(1)} + w_2 oldsymbol{x}^{(2)} + \ldots + w_d oldsymbol{x}^{(d)} \ &= ec{w} \cdot \operatorname{Aug}(ec{oldsymbol{x}}) \end{aligned}$$

#### The general problem

• We have n data points,  $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_n, y_n)$ , where each  $\vec{x}_i$  is a feature vector of d features:

$$ec{x}_i = egin{bmatrix} x_i^{(1)} \ x_i^{(2)} \ dots \ x_i^{(d)} \end{bmatrix}$$

We want to find a good linear hypothesis function:

$$egin{aligned} H(ec{oldsymbol{x}}) &= w_0 + w_1 oldsymbol{x}^{(1)} + w_2 oldsymbol{x}^{(2)} + \ldots + w_d oldsymbol{x}^{(d)} \ &= ec{w} \cdot \operatorname{Aug}(ec{oldsymbol{x}}) \end{aligned}$$

### The general solution

• Define the design matrix  $X \in \mathbb{R}^{n \times (d+1)}$  and observation vector  $\vec{y} \in \mathbb{R}^n$ :

$$X = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \ dots & dots & dots & dots \ 1 & x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(d)} \end{bmatrix} = egin{bmatrix} \mathrm{Aug}(ec{x_1})^T \ \mathrm{Aug}(ec{x_2})^T \ dots \ \mathrm{Aug}(ec{x_n})^T \end{bmatrix} & ec{y} = egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix}$$

• Then, solve the **normal equations** to find the optimal parameter vector,  $\vec{w}^*$ :

$$oldsymbol{X}^Toldsymbol{X}oldsymbol{ec{w}}^* = oldsymbol{X}^Toldsymbol{ec{y}}$$

### Terminology for parameters

- With d features,  $\vec{w}$  has d+1 entries.
- $w_0$  is the bias, also known as the intercept.
- $w_1, w_2, \ldots, w_d$  each give the **weight**, or **coefficient**, or **slope**, of a feature.

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)}$$

# Interpreting parameters

#### **Example: Predicting sales**

- For each of 26 stores, we have:
  - net sales,
  - square feet,
  - inventory,
  - o advertising expenditure,
  - district size, and
  - o number of competing stores.
- Goal: Predict net sales given the other five features.
- To begin, we'll start trying to fit the hypothesis function to predict sales:

$$H(\text{square feet, competitors}) = w_0 + w_1 \cdot \text{square feet} + w_2 \cdot \text{competitors}$$

# Question 👺

#### Answer at q.dsc40a.com

 $H(\text{square feet, competitors}) = w_0 + w_1 \cdot \text{square feet} + w_2 \cdot \text{competitors}$ 

What will be the signs of  $w_1^*$  and  $w_2^*$ ?

• A. 
$$w_1^* + w_2^* +$$

$$ullet$$
 B.  $w_1^*+ w_2^*-$ 

$$ullet$$
 A.  $w_1^*- w_2^*+$ 

$$ullet$$
 A.  $w_1^*- w_2^*-$ 

Let's find out! Follow along in this notebook.

# Question 👺

#### Answer at q.dsc40a.com

#### Which feature is most "important"?

- ullet A. square feet:  $w_1^*=16.202$
- ullet B. competitors:  $w_2^*=-5.311$
- C. inventory:  $w_2^* = 0.175$
- ullet D. advertising:  $w_3^*=11.526$
- ullet E. district size:  $w_4^*=13.580$

### Which features are most "important"?

- The most important feature is **not necessarily** the feature with largest magnitude weight.
- Features are measured in different units, i.e. different scales.
  - $\circ$  Suppose I fit one hypothesis function,  $H_1$ , with sales in US dollars, and another hypothesis function,  $H_2$ , with sales in Japanese yen (1 USD  $\approx$  157 yen).
  - Sales is just as important in both hypothesis functions.
  - $\circ$  But the weight of sales in  $H_1$  will be 157 times larger than the weight of sales in  $H_2$ .
- **Solution**: If you care about the interpretability of the resulting weights, **standardize** each feature before performing regression, i.e. convert each feature to standard units.

#### Standard units

• Recall: to convert a feature  $x_1, x_2, \ldots, x_n$  to standard units, we use the formula:

$$x_{i \; ( ext{su})} = rac{x_i - ar{x}}{\sigma_x}$$

- Example: 1, 7, 7, 9.
  - Mean:  $\frac{1+7+7+9}{4} = \frac{24}{4} = 6$ .
  - Standard deviation:

$$SD = \sqrt{\frac{1}{4}((1-6)^2 + (7-6)^2 + (7-6)^2 + (9-6)^2)} = \sqrt{\frac{1}{4} \cdot 36} = 3$$

Standardized data:

$$1\mapsto\frac{1-6}{3}=\boxed{-\frac{5}{3}}\qquad 7\mapsto\frac{7-6}{3}=\boxed{\frac{1}{3}}\qquad 7\mapsto\boxed{\frac{1}{3}}\qquad 9\mapsto\frac{9-6}{3}=\boxed{1}$$

### Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
  - There's no need to standardize the outcome (net sales), since it's not being compared to anything.
  - Also, we can't standardize the column of all 1s.
- Then, solve the normal equations. The resulting  $w_0^*, w_1^*, \dots, w_d^*$  are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.
- Note that standardizing each feature does not change the MSE of the resulting hypothesis function!

Once again, let's try it out! Follow along in this notebook.

#### Summary

- The normal equations can be used to solve multiple linear regression problems.
- Interpret the parameters as weights. Signs give meaningful information. Can only compare weight magnitude if data is standardized.
- On Friday: nonlinear features!