Lecture 11

Regression and Linear Algebra

DSC 40A, Fall 2024

Announcements

- Homework 3 is due on Friday, October 25th.
- Homework 1 scores are available on Gradescope.
 - Regrade requests are due tonight.
- The Midterm Exam is on Monday, Nov 4th in class.

Agenda

- Regression and linear algebra.
- Finding the optimal parameter vector
 - by minimizing the projection error (linear algebra).
 - by minimizing empirical risk (multivariate calculus).

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Electure Questions"
Lecture Questions

Regression and linear algebra

Wait... why do we need linear algebra?

- We want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - $\circ\,$ Use multiple features (input variables), e.g., $H(x)=w_0+w_1x^{(1)}+w_2x^{(2)}.$
 - $\circ\,$ Are non-linear in the features, e.g., $H(x)=w_0+w_1x+w_2x^2.$
- Let's see if we can put what we learned last week to use.

Simple linear regression, revisited

- Model: $H(x) = w_0 + w_1 x$.
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector, $\|ec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed values.
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$\boldsymbol{e_i} = \boldsymbol{y_i} - \boldsymbol{H}(\boldsymbol{x_i})$$

This is the vector of signed errors.

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed values.
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components: $e_i = y_i H(x_i)$
- Key idea: We can rewrite the mean squared error of *H* as:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(oldsymbol{y}_{oldsymbol{i}} - H(x_i)
ight)^2 = rac{1}{n}\sum_{i=1}^n oldsymbol{e}_{oldsymbol{i}}^2 = rac{1}{n} \|oldsymbol{ec{e}}\|^2 = rac{1}{n} \|oldsymbol{ec{v}} - oldsymbol{ec{h}}\|^2$$

The hypothesis vector

- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x) = w_0 + w_1 x$, the hypothesis vector can be written:

$$ec{h} = egin{bmatrix} w_0 + w_1 x_1 \ w_0 + w_1 x_2 \ dots \ w_0 + w_1 x_n \end{bmatrix} = \ ec{w}_0 + w_1 x_n \end{bmatrix}$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ dots & dots \ 1 & x_n \end{bmatrix}$$

- Define the parameter vector $ec w \in \mathbb{R}^2$ to be $ec w = egin{bmatrix} w_0 \\ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(H) = rac{1}{n} \|ec{m{y}} - ec{m{h}}\|^2 \implies egin{array}{c} R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{m{y}} - m{X}ec{w}\|^2 \end{array}$$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (oldsymbol{y_i} - (w_0+w_1oldsymbol{x_i}))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$ that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

• Do we already know the $\vec{w^*}$ that minimizes $R_{
m sq}(ec{w})$?

An optimization problem we've seen before

• The optimal parameter vector, $\vec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$, is the one that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{oldsymbol{y}} - oldsymbol{X} ec{w}\|^2 = rac{1}{n} \|ec{oldsymbol{e}}\|^2$$

• The minimizer of $\|ec{e}\|$ is the same as the minimizer of $R_{
m sq}(ec{w})!$

$$ec{w}^* = rg\min_{ec{w}} R_{ ext{sq}} = rg\min_{ec{w}} \|ec{m{e}}\|$$

• Last week we found that the vector in the span of the columns of X that is closest to \vec{y} is the vector $X\vec{w}$ such that $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|$ is minimized.

The modeling recipe

1. Choose a model.

$$H(x) = egin{bmatrix} 1 & oldsymbol{x} \end{bmatrix}^T ec{w} = w_0 + w_1 oldsymbol{x}$$

2. Choose a loss function.

$$\boldsymbol{e} = \boldsymbol{y} - \begin{bmatrix} 1 & \boldsymbol{x} \end{bmatrix}^T \boldsymbol{w}$$

3. Minimize average loss to find optimal model parameters.

$$ec{w}^* = rg\min_{ec{w}} R_{ ext{sq}}(ec{w}) = rg\min_{ec{w}} \left\{ rac{1}{n} \|ec{m{y}} - m{X}ec{w}\|^2
ight\} = rg\min_{ec{w}} \left\{ rac{1}{n} \|ec{m{e}}\|^2
ight\}$$

An optimization problem we've seen before

• Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} - X\vec{w}$, is orthogonal to the columns of X.

• Why? Because this will make the error vector as short as possible.

• The \vec{w}^* that accomplishes this satisfies:

$$X^T \vec{e} = 0$$

• Why? Because $X^T \vec{e}$ contains the **dot products** of each column in X with \vec{e} . If these are all 0, then \vec{e} is **orthogonal** to **every column of** X!

$$X^T ec{e} = egin{bmatrix} -ec{1}^T - \ -ec{x}^T - \end{bmatrix} ec{e} = egin{bmatrix} ec{1}^T ec{e} \ ec{x}^T ec{e} \end{bmatrix}$$

The normal equations

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} X\vec{w}$, is orthogonal to the columns of X.
- The \vec{w}^* that accomplishes this satisfies:

 $egin{aligned} X^T ec{e} &= 0 \ X^T (ec{y} - X ec{w}^*) &= 0 \ X^T ec{y} - X^T X ec{w}^* &= 0 \end{aligned}$

• The normal equations:

 $\implies X^T X \vec{w}^* = X^T \vec{y}$

• Assuming $X^T X$ is invertible, this is the vector:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

- This is a big assumption, because it requires $X^T X$ to be **full rank**.
- If $X^T X$ is not full rank, then there are infinitely many solutions to the normal equations.

An optimization problem, solved

- We just used linear algebra to solve an **optimization problem**.
- Specifically, the function we minimized is:

 $\operatorname{error}(ec{w}) = \|ec{y} - Xec{w}\|$

• The input, \vec{w}^* , to $\operatorname{error}(\vec{w})$ that minimizes it is one that satisfies the normal equations:

$$X^T X \vec{w}^* = X^T \vec{y}$$

If $X^T X$ is invertible, then the unique solution is:

 $ec{w}^* = (X^T X)^{-1} X^T ec{y}$

- Key idea: $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$ also minimizes $R_{
 m sq}(\vec{w})!$
- We're going to use this frequently!

Alternative solution

• Our goal is to find the vector \vec{w} that minimize mean squared error:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

- Strategy: calculus
- Problem: This is a function *of a vector*. What does it even mean to take the derivative of $R_{sq}(\vec{w})$ with respect to a vector \vec{w} ?

A function of a vector

• Solution: A function *of a vector* is really just a function *of multiple variables*, which are the components of the vector. In other words,

$$R_{
m sq}(ec w) = R_{
m sq}(w_0,w_1,\ldots,w_d)$$

where w_0, w_1, \ldots, w_d are the entries of the vector \vec{w} . In our case, \vec{w} has just two components, w_0 and w_1 . We'll be more general since we eventually want to use prediction rules with even more parameters.

• We know how to deal with derivatives of multivariable functions: the gradient!

The gradient with respect to a vector

• The gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} is the vector of partial derivatives:

where w_0, w_1, \ldots, w_d are the entries of the vector \vec{w} .

Goal

• We want to minimize the mean squared error:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2$$

• Strategy:

- 1. Compute the gradient of $R_{
 m sq}(ec{w})$.
- 2. Set it to zero and solve for \vec{w} .
 - $\circ\,$ The result is the optimal parameter vector $ec{w}^*.$
- Let's start by rewriting the mean squared error in a way that will make it easier to compute its gradient.

Answer at q.dsc40a.com

Which of the following is equivalent to $R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$? A) $\frac{1}{n}(\vec{y} - X\vec{w}) \cdot (X\vec{w} - y)$ B) $\frac{1}{n}\sqrt{(\vec{y} - X\vec{w}) \cdot (y - X\vec{w})}$ C) $\frac{1}{n}(\vec{y} - X\vec{w})^T(y - X\vec{w})$ D) $\frac{1}{n}(\vec{y} - X\vec{w})(y - X\vec{w})^T$

Rewriting mean squared error

 $egin{aligned} ext{Remider:} & ig(AB)^T = B^T A^T \ R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - oldsymbol{X} ec{w}\|^2 = \end{aligned}$

Compute the gradient

$$\begin{aligned} \frac{dR_{\mathrm{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} \left(\vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right) \right) \\ &= \frac{1}{n} \left(\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) \right) \end{aligned}$$

Answer at q.dsc40a.com

Which of the following is $\frac{d}{d\vec{w}}(\vec{y} \cdot \vec{y})$? A. $\vec{y} \cdot \vec{y}$ B. $2\vec{y}$ C. 1 D. 0

Compute the gradient

$$\begin{split} \frac{dR_{\mathrm{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} \left(\vec{y} \cdot \vec{y} - 2X^T \vec{y} \cdot \vec{w} + \vec{w}^T X^T X \vec{w} \right) \right) \\ &= \frac{1}{n} \left(\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(2X^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) \right) \end{split}$$

•
$$\frac{d}{d\vec{w}}\left(\vec{y}\cdot\vec{y}\right)=0.$$

• Why? \vec{y} is a constant with respect to \vec{w} .

•
$$rac{d}{dec w} \Big(ec 2 X^T ec y \cdot ec w\Big) = 2 X^T y.$$

• Why? In groupwork today you will show $\frac{d}{d\vec{x}}\vec{a}\cdot\vec{x}=\vec{a}$.

•
$$\frac{d}{d\vec{w}} \left(\vec{w}^T X^T X \vec{w} \right) = 2 X^T X \vec{w}.$$

• Why? You will prove in homework 4.

Compute the gradient

$$egin{aligned} &rac{dR_{ ext{sq}}}{dec{w}} = rac{d}{dec{w}}igg(rac{1}{n}igg(ec{y}\cdotec{y}-2oldsymbol{X}^Tec{y}\cdotec{w}+ec{w}^Toldsymbol{X}^Toldsymbol{x}ec{w}igg)igg) \ &= rac{1}{n}igg(rac{d}{dec{w}}igg(ec{y}\cdotec{y}igg)-rac{d}{dec{w}}igg(2oldsymbol{X}^Tec{y}\cdotec{w}igg)+rac{d}{dec{w}}igg(ec{w}^Toldsymbol{X}^Toldsymbol{x}ec{w}igg) igg) \ &= rac{1}{n}igg(-2oldsymbol{X}^Tec{y}+2oldsymbol{X}^Toldsymbol{X}ec{w}igg) \end{aligned}$$

The normal equations (again)

• To minimize $R_{
m sq}(ec{w})$, set its gradient to zero and solve for $ec{w}$:

$$egin{aligned} -2X^Tec{y}+2X^TXec{w}=0\ &\implies X^TXec{w}=X^Tec{j} \end{aligned}$$

- We have seen this system of equations in matrix form before: the **normal** equations.
- If $X^T X$ is invertible, the solution is

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

The optimal parameter vector, \vec{w}^*

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{
 m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n(y_i-(w_0+w_1x_i))^2$.
 - We found, using calculus, that:

•
$$w_1^* = rac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r rac{\sigma_y}{\sigma_x}.$$

• $w_0^* = \bar{y} - w_1^* \bar{x}.$

• Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{
m sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$.

 \circ The minimizer, if $X^T X$ is invertible, is the vector $|ec{w}^* = (X^T X)^{-1} X^T ec{y}|$.

• These formulas are equivalent!

Summary: Regression and linear algebra (Solution 1)

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ dots$$

• How do we make the hypothesis vector, $\vec{h} = X\vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^* :

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

• We chose \vec{w}^* so that $\vec{h}^* = X\vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, X and minimized the length of the projection error $\|\vec{e}\| = \|\vec{y} - X\vec{w}\|.$

31

Summary: Regression and linear algebra (Solution 2)

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ dots$$

• How do we minimize the mean squared error $R_{
m sq}(\vec{w}) = \frac{1}{n} \|\vec{y} - X\vec{w}\|^2$? Using calculus the optimal paramter vector \vec{w}^* is:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

Roadmap

- Next class, we'll present a more general framing of the multiple linear regression model, that uses *d* features instead of just two.
- We'll also look at how we can **engineer** new features using existing features.
 - $\circ\,$ e.g. How can we fit a hypothesis function of the form $H(x)=w_0+w_1x+w_2x^2?$