Lecture 7

Orthogonal Projections

DSC 40A, Spring 2024

Announcements

- Homework 3 is due on Saturday, April 27th.
- Still try to finish it relatively early, since we won't have office hours on Saturday.
- Homework 1 scores are available on Gradescope.
- Regrade requests are due on Sunday.

Agenda

- Spans and projections.
- Matrices.
- Spans and projections, revisited.
- Regression and linear algebra.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions"
link in the top right corner of dsc40a.com.

Spans and projections

Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^{n}.
- The span of \vec{x} is the set of all vectors of the form:

$$
w \vec{x}
$$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the \qquad projection of \vec{y} onto $\operatorname{span}(\vec{x})$.

Projection error

- Let $\vec{e}=\vec{y}-w \vec{x}$ be the projection error: that is, the vector that connects \vec{y} to $\operatorname{span}(\vec{x})$.
- Goal: Find the w that makes \vec{e} as short as possible.
- That is, minimize:
$\|\vec{e}\|$
- Equivalently, minimize:

$$
\|\vec{y}-w \vec{x}\|
$$

- Idea: To make \vec{e} has short as possible, it should be orthogonal to $w \vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e}=\vec{y}-w \vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w \vec{x}$.
- Can we prove that making \vec{e} orthogonal to $w \vec{x}$ minimizes $\|\vec{e}\|$?

Minimizing projection error

- Goal: Find the w that makes $\vec{e}=\vec{y}-w \vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|, \vec{e}$ must be orthogonal to $w \vec{x}$.
- Given this fact, how can we solve for w ?

Orthogonal projection

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- Answer: It is the vector $w^{*} \vec{x}$, where:

$$
w^{*}=\frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}}
$$

- Note that w^{*} is the solution to a minimization problem, specifically, this one:

$$
\operatorname{error}(w)=\|\vec{e}\|=\|\vec{y}-w \vec{x}\|
$$

- We call $w^{*} \vec{x}$ the orthogonal projection of \vec{y} onto $\operatorname{span}(\vec{x})$.
- Think of $w^{*} \vec{x}$ as the "shadow" of \vec{y}.

Exercise

Let $\vec{a}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-1 \\ 9\end{array}\right]$.
What is the orthogonal projection of \vec{a} onto $\operatorname{span}(\vec{b})$?
Your answer should be of the form $w^{*} \vec{b}$, where w^{*} is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, $\vec{y}, \vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^{n}.
- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- Vectors in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ are of the form $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$, where $w_{1}, w_{2} \in \mathbb{R}$ are scalars.
- Before trying to answer, let's watch this animation that Jack, one of our tutors, made.

Minimizing projection error in multiple dimensions

- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- That is, what vector minimizes $\|\vec{e}\|$, where:

$$
\vec{e}=\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}
$$

- Answer: It's the vector such that $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$ is orthogonal to \vec{e}.
- Issue: Solving for w_{1} and w_{2} in the following equation is difficult:

$$
\left(w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
$$

Minimizing projection error in multiple dimensions

- It's hard for us to solve for w_{1} and w_{2} in:

$$
\left(w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
$$

- Observation: All we really need is for $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ to individually be orthogonal to \vec{e}.
- That is, it's sufficient for \vec{e} to be orthogonal to the spanning vectors themselves.
- If $\vec{x}^{(1)} \cdot \vec{e}=0$ and $\vec{x}^{(2)} \cdot \vec{e}=0$, then:

Minimizing projection error in multiple dimensions

- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- Answer: It's the vector such that $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$ is orthogonal to $\vec{e}=\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}$.
- Equivalently, it's the vector such that $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are both orthogonal to \vec{e} :

$$
\begin{array}{|l}
\vec{x}^{(1)} \cdot\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)=0 \\
\vec{x}^{(2)} \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
\end{array}
$$

- This is a system of two equations, two unknowns (w_{1} and w_{2}), but it still looks difficult to solve.

Now what?

- We're looking for the scalars w_{1} and w_{2} that satisfy the following equations:

$$
\begin{aligned}
& \vec{x}^{(1)} \cdot\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)=0 \\
& \vec{x}^{(2)} \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
\end{aligned}
$$

- In this example, we just have two spanning vectors, $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.
- If we had any more, this system of equations would get extremely messy, extremely quickly.
- Idea: Rewrite the above system of equations as a single equation, involving matrixvector products.

Matrices

Matrices

- An $n \times d$ matrix is a table of numbers with n rows and d columns.
- We use upper-case letters to denote matrices.

$$
A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right]
$$

- Since A has two rows and three columns, we say $A \in \mathbb{R}^{2 \times 3}$.
- Key idea: Think of a matrix as several column vectors, stacked next to each other.

Matrix addition and scalar multiplication

- We can add two matrices only if they have the same dimensions.
- Addition occurs elementwise:

$$
\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right]+\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 7 & 11 \\
-1 & 6 & -1
\end{array}\right]
$$

- Scalar multiplication occurs elementwise, too:

$$
2\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right]=\left[\begin{array}{ccc}
4 & 10 & 16 \\
-2 & 10 & -6
\end{array}\right]
$$

Matrix-matrix multiplication

- Key idea: We can multiply matrices A and B if and only if:
$\#$ columns in $A=\#$ rows in B
- If A is $n \times d$ and B is $d \times p$, then $A B$ is $n \times p$.
- Example: If A is as defined below, what is $A^{T} A$?

$$
A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right]
$$

Question

Answer at q.dsc40a.com

Assume A, B, and C are all matrices. Select the incorrect statement below.

- A. $A(B+C)=A B+A C$.
- B. $A(B C)=(A B) C$.
- C. $A B=B A$.
- D. $(A+B)^{T}=A^{T}+B^{T}$.
- E. $(A B)^{T}=B^{T} A^{T}$.

Matrix-vector multiplication

- A vector $\vec{v} \in \mathbb{R}^{n}$ is a matrix with n rows and 1 column.

$$
\vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

- Suppose $A \in \mathbb{R}^{n \times d}$.
- What must the dimensions of \vec{v} be in order for the product $A \vec{v}$ to be valid?
- What must the dimensions of \vec{v} be in order for the product $\vec{v}^{T} A$ to be valid?

One view of matrix-vector multiplication

- One way of thinking about the product $A \vec{v}$ is that it is the dot product of \vec{v} with every row of A.
- Example: What is $A \vec{v}$?

$$
A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
2 \\
-1 \\
-5
\end{array}\right]
$$

Another view of matrix-vector multiplication

- Another way of thinking about the product $A \vec{v}$ is that it is a linear combination of the columns of A, using the weights in \vec{v}.
- Example: What is $A \vec{v}$?

$$
A=\left[\begin{array}{ccc}
2 & 5 & 8 \\
-1 & 5 & -3
\end{array}\right] \quad \vec{v}=\left[\begin{array}{c}
2 \\
-1 \\
-5
\end{array}\right]
$$

Matrix-vector products create linear combinations of columns!

- Key idea: It'll be very useful to think of the matrix-vector product $A \vec{v}$ as a linear combination of the columns of A, using the weights in \vec{v}.

Spans and projections, revisited

Moving to multiple dimensions

- Let's now consider three vectors, $\vec{y}, \vec{x}^{(1)}$, and $\vec{x}^{(2)}$, all in \mathbb{R}^{n}.
- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- That is, what values of w_{1} and w_{2} minimize $\|\vec{e}\|=\left\|\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right\|$?

Matrix-vector products create linear combinations of columns!

$$
\vec{x}^{(1)}=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right] \quad \vec{x}^{(2)}=\left[\begin{array}{c}
-1 \\
0 \\
4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Combining $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix gives:

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
$$

- Then, if $\vec{w}=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$, linear combinations of $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ can be written as $X \vec{w}$.
- The span of the columns of X, or $\operatorname{span}(X)$, consists of all vectors that can be written in the form $X \vec{w}$.

Minimizing projection error in multiple dimensions

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Goal: Find the vector $\vec{w}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{T}$ such that $\|\vec{e}\|=\|\vec{y}-X \vec{w}\|$ is minimized.
- As we've seen, \vec{w} must be such that:

$$
\begin{aligned}
& \vec{x}^{(1)} \cdot\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)=0 \\
& \vec{x}^{(2)} \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
\end{aligned}
$$

- How can we use our knowledge of matrices to rewrite this system of equations as a single equation?

Simplifying the system of equations, using matrices

$$
\begin{aligned}
& X= {\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right] } \\
& \vec{x}^{(1)} \cdot\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)=0 \\
& \vec{x}^{(2)} \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
\end{aligned}
$$

Simplifying the system of equations, using matrices

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

1. $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$ can be written as $X \vec{w}$, so $\vec{e}=\vec{y}-X \vec{w}$.
2. The condition that \vec{e} must be orthogonal to each column of X is equivalent to condition that $X^{T} \vec{e}=0$.

The normal equations

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Goal: Find the vector $\vec{w}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{T}$ such that $\|\vec{e}\|=\|\vec{y}-X \vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^{*} such that:

$$
\begin{aligned}
X^{T} \vec{e} & =0 \\
X^{T}\left(\vec{y}-X \vec{w}^{*}\right) & =0 \\
X^{T} \vec{y}-X^{T} X \vec{w}^{*} & =0 \\
\Longrightarrow X^{T} X \vec{w}^{*} & =X^{T} \vec{y}
\end{aligned}
$$

- The last statement is referred to as the normal equations.

The general solution to the normal equation

$$
X \in \mathbb{R}^{n \times d} \quad \vec{y} \in \mathbb{R}^{n}
$$

- Goal, in general: Find the vector $\vec{w} \in \mathbb{R}^{d}$ such that $\|\vec{e}\|=\|\vec{y}-X \vec{w}\|$ is minimized.
- We now know that it is the vector \vec{w}^{*} such that:

$$
\begin{aligned}
X^{T} \vec{e} & =0 \\
\Longrightarrow X^{T} X \vec{w}^{*} & =X^{T} \vec{y}
\end{aligned}
$$

- Assuming $X^{T} X$ is invertible, this is the vector:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- This is a big assumption, because it requires $X^{T} X$ to be full rank.
- If $X^{T} X$ is not full rank, then there are infinitely many solutions to the normal equations, $X^{T} X \vec{w}^{*}=X^{T} \vec{y}$.

What does it mean?

- Original question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- Final answer: It is the vector $X \vec{w}^{*}$, where:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- Revisiting our example:

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Using a computer gives us $\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y} \approx\left[\begin{array}{l}0.7289 \\ 1.6300\end{array}\right]$.
- So, the vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ closest to \vec{y} is $0.7289 \vec{x}^{(1)}+1.6300 \vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an optimization problem.
- Specifically, the function we minimized is:

$$
\operatorname{error}(\vec{w})=\|\vec{y}-X \vec{w}\|
$$

- This is a function whose input is a vector, \vec{w}, and whose output is a scalar!
- The input, \vec{w}^{*}, to error (\vec{w}) that minimizes it is:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- We're going to use this frequently!

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
- Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
- Use multiple features (input variables).
- Are non-linear in the features, e.g. $H(x)=w_{0}+w_{1} x+w_{2} x^{2}$.
- Let's see if we can put what we've just learned to use.

Simple linear regression, revisited

- Model: $H(x)=w_{0}+w_{1} x$.
- Loss function: $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$.
- To find w_{0}^{*} and w_{1}^{*}, we minimized empirical risk, i.e. average loss:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- Observation: $R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)$ kind of looks like the formula for the norm of a vector,

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$. This is the vector of observed "actual values".
- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components:

$$
e_{i}=y_{i}-H\left(x_{i}\right)
$$

Example

Consider $H(x)=2+\frac{1}{2} x$.

$$
\vec{y}=\quad \vec{h}=
$$

$$
\begin{aligned}
& \vec{e}=\vec{y}-\vec{h}= \\
& R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2} \\
& \\
& =
\end{aligned}
$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$. This is the vector of observed "actual values".
- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components:

$$
e_{i}=y_{i}-H\left(x_{i}\right)
$$

- Key idea: We can rewrite the mean squared error of H as:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=\frac{1}{n}\|\vec{e}\|^{2}=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2}
$$

The hypothesis vector

- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x)=w_{0}+w_{1} x$, the hypothesis vector can be written:

$$
\vec{h}=\left[\begin{array}{c}
w_{0}+w_{1} x_{1} \\
w_{0}+w_{1} x_{2} \\
\vdots \\
w_{0}+w_{1} x_{n}
\end{array}\right]=
$$

Rewriting the mean squared error

- Define the design matrix $X \in \mathbb{R}^{n \times 2}$ as:

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]
$$

- Define the parameter vector $\vec{w} \in \mathbb{R}^{2}$ to be $\vec{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$.
- Then, $\vec{h}=X \vec{w}$, so the mean squared error becomes:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2} \Longrightarrow R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

What's next?

- To find the optimal model parameters for simple linear regression, w_{0}^{*} and w_{1}^{*}, we previously minimized:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_{0}^{*} and w_{1}^{*} by minimizing:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- We've already solved this problem! Assuming $X^{T} X$ is invertible, the best \vec{w} is:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

