Lecture 6

Dot Products and Projections

DSC 40A, Spring 2024

Announcements

- Homework 2 is due tonight. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
- The proof that we were going to cover last class (that

$$
\left.R_{\mathrm{sq}}\left(w_{0}^{*}, w_{1}^{*}\right)=\sigma_{y}^{2}\left(1-r^{2}\right)\right) \text { is now in the FAQs page, under Week } 3 .
$$

DSC Undergraduate Town Hall

Monday, April 22nd, 1-3PM HDSI 123

Agenda

- Recap: Friends of simple linear regression.
- Dot products.
- Spans and projections.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions"
link in the top right corner of dsc40a.com.

Recap: Friends of simple linear regression

Predicted Commute Time $=142.25$ - 8.19 * Departure Hour

Simple linear regression

- Model: $H(x)=w_{0}+w_{1} x$.
- Loss function: squared loss, i.e. $L_{\text {sq }}\left(y_{i}, H\left(x_{i}\right)\right)=\left(y_{i}-H\left(x_{i}\right)\right)^{2}$.
- Average loss, i.e. empirical risk:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Optimal model parameters, found by minimizing empirical risk:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Friends of simple linear regression

- Suppose we use squared loss throughout.
- If our model is $H(x)=w_{1} x$, it is a line that is forced through the origin, $(0,0)$.

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

- If our model is $H(x)=w_{0}$, it is a line that is forced to have a slope of 0 , i.e. a horizontal line. This is the same as the constant model from before.

$$
w_{0}^{*}=\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

- Key idea: w_{0}^{*} above is not necessarily equal to w_{0}^{*} for the simple linear regression mode!!

Comparing mean squared errors

$$
\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- The MSE of the best simple linear regression model is ≈ 97.
- The MSE of the best constant model is ≈ 167.
- The simple linear regression model is a more flexible version of the constant model.

Dot products

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
- Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
- Use multiple features (input variables).
- Are non-linear, e.g. $H(x)=w_{0}+w_{1} x+w_{2} x^{2}$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the span of one or more vectors.
- To jump start our review of linear algebra, let's start by watching ieat this video by 3blue1brown.

Warning !

- We're not going to cover every single detail from your linear algebra course.
- There will be facts that you're expected to remember that we won't explicitly say.
- For example, if A and B are two matrices, then $A B \neq B A$.
- This is the kind of fact that we will only mention explicitly if it's directly relevant to what we're studying.
- But you still need to know it, and it may come up in homework questions.
- We will review the topics that you really need to know well.

Vectors

- A vector in \mathbb{R}^{n} is an ordered collection of n numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as columns.

$$
\vec{v}=\left[\begin{array}{c}
8 \\
3 \\
-2 \\
5
\end{array}\right]
$$

- Another way of writing the above vector is $\vec{v}=[8,3,-2,5]^{\top}$.
- Since \vec{v} has four components, we say $\vec{v} \in \mathbb{R}^{4}$.

The geometric interpretation of a vector

- A vector $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ is an arrow to the point $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ from the origin.
- The length, or L_{2} norm, of \vec{v} is:

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

- A vector is sometimes described as an object with a magnitude/length and direction.

Dot product: coordinate definition

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is written as:

$$
\vec{u} \cdot \vec{v}=\vec{u}^{\top} \vec{v}
$$

- The computational definition of the dot product:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

- The result is a scalar, i.e. a single number.

Question

Answer at q.dsc40a.com

Which of these is another expression for the length of \vec{v} ?

- A. $\vec{v} \cdot \vec{v}$
- B. $\sqrt{\vec{v}^{2}}$
- C. $\sqrt{\vec{v} \cdot \vec{v}}$
- D. \vec{v}^{2}
- E. More than one of the above.

Dot product: geometric definition

- The computational definition of the dot product:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

- The geometric definition of the dot product:

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

where θ is the angle between \vec{u} and \vec{v}.

- The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors.

Question

Answer at q.dsc40a.com

What is the value of θ in the plot to the right?

Orthogonal vectors

- Recall: $\cos 90^{\circ}=0$.
- Since $\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta$, if the angle between two vectors is 90°, their dot product is $\|\vec{u}\|\|\vec{v}\| \cos 90^{\circ}=0$.
- If the angle between two vectors is 90°, we say they are perpendicular, or more generally, orthogonal.
- Key idea:

$$
\text { two vectors are orthogonal } \Longleftrightarrow \vec{u} \cdot \vec{v}=0
$$

Exercise

Find a non-zero vector in \mathbb{R}^{3} orthogonal to:

$$
\vec{v}=\left[\begin{array}{c}
2 \\
5 \\
-8
\end{array}\right]
$$

Spans and projections

Adding and scaling vectors

- The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is the element-wise sum of their components:

$$
\vec{u}+\vec{v}=\left[\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right]
$$

- If c is a scalar, then:

$$
c \vec{v}=\left[\begin{array}{c}
c v_{1} \\
c v_{2} \\
\vdots \\
c v_{n}
\end{array}\right]
$$

Linear combinations

- Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ all be vectors in \mathbb{R}^{n}.
- A linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is any vector of the form:

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are all scalars.

Span

- Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ all be vectors in \mathbb{R}^{n}.
- The span of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$
\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right)=\left\{a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\ldots+a_{n} \vec{v}_{n}: a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

Exercise

Let $\vec{v}_{1}=\left[\begin{array}{c}2 \\ -3\end{array}\right]$ and let $\vec{v}_{2}=\left[\begin{array}{c}-1 \\ 4\end{array}\right]$. Is $\vec{y}=\left[\begin{array}{l}9 \\ 1\end{array}\right]$ in $\operatorname{span}\left(\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right)$?

If so, write \vec{y} as a linear combination of $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$.

Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^{n}.
- The span of \vec{x} is the set of all vectors of the form:

$$
w \vec{x}
$$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the projection of \vec{y} onto $\operatorname{span}(\vec{x})$.

Projection error

- Let $\vec{e}=\vec{y}-w \vec{x}$ be the projection error: that is, the vector that connects \vec{y} to $\operatorname{span}(\vec{x})$.
- Goal: Find the w that makes \vec{e} as short as possible.
- That is, minimize:
$\|\vec{e}\|$
- Equivalently, minimize:

$$
\|\vec{y}-w \vec{x}\|
$$

- Idea: To make \vec{e} has short as possible, it should be orthogonal to $w \vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e}=\vec{y}-w \vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w \vec{x}$.
- Can we prove that making \vec{e} orthogonal to $w \vec{x}$ minimizes $\|\vec{e}\|$?

Minimizing projection error

- Goal: Find the w that makes $\vec{e}=\vec{y}-w \vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|, \vec{e}$ must be orthogonal to $w \vec{x}$.
- Given this fact, how can we solve for w ?

Orthogonal projection

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- Answer: It is the vector $w^{*} \vec{x}$, where:

$$
w^{*}=\frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}}
$$

- Note that w^{*} is the solution to a minimization problem, specifically, this one:

$$
\operatorname{error}(w)=\|\vec{e}\|=\|\vec{y}-w \vec{x}\|
$$

- We call $w^{*} \vec{x}$ the orthogonal projection of \vec{y} onto $\operatorname{span}(\vec{x})$.
- Think of $w^{*} \vec{x}$ as the "shadow" of \vec{y}.

Exercise

Let $\vec{a}=\left[\begin{array}{l}5 \\ 2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-1 \\ 9\end{array}\right]$.
What is the orthogonal projection of \vec{a} onto $\operatorname{span}(\vec{b})$?
Your answer should be of the form $w^{*} \vec{b}$, where w^{*} is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, $\vec{y}, \vec{x}^{(1)}$ and $\vec{x}^{(2)}$, all in \mathbb{R}^{n}.
- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- Vectors in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ are of the form $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$, where $w_{1}, w_{2} \in \mathbb{R}$ are scalars.
- Before trying to answer, let's watch this animation that Jack, one of our tutors, made.

Minimizing projection error in multiple dimensions

- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- That is, what vector minimizes $\|\vec{e}\|$, where:

$$
\vec{e}=\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}
$$

- Answer: It's the vector such that $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$ is orthogonal to \vec{e}.
- Issue: Solving for w_{1} and w_{2} in the following equation is difficult:

$$
\left(w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
$$

What's next?

- It's hard for us to solve for w_{1} and w_{2} in:

$$
\left(w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right)}_{\vec{e}}=0
$$

- Solution: Combine $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix, X, and express $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$ as a matrix-vector multiplication, $X w$.
- Next time: Formulate linear regression in terms of matrices and vectors!

