Lecture 6

# **Dot Products and Projections**

1

DSC 40A, Spring 2024

#### Announcements

- Homework 2 is due **tonight**. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
  - The proof that we were going to cover last class (that  $R_{
    m sq}(w_0^*,w_1^*)=\sigma_y^2(1-r^2)$ ) is now in the FAQs page, under Week 3.

## DSC Undergraduate Town Hall Monday, April 22nd, 1-3PM HDSI 123

Come ask questions and voice your feedback about the undergraduate program, while socializing with faculty!

Your favorite professors will be there - and so will free cookies!





Scan me to RSVP!



### Agenda

- Recap: Friends of simple linear regression.
- Dot products.
- Spans and projections.



Answer at q.dsc40a.com

#### Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

## **Recap: Friends of simple linear regression**



#### Simple linear regression

- Model:  $H(x) = w_0 + w_1 x$ .
- Loss function: squared loss, i.e.  $L_{
  m sq}(y_i, H(x_i)) = (y_i H(x_i))^2$ .
- Average loss, i.e. empirical risk:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

• Optimal model parameters, found by minimizing empirical risk:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

#### Friends of simple linear regression

- Suppose we use squared loss throughout.
- If our model is  $H(x) = w_1 x$ , it is a line that is forced through the origin, (0, 0).

$$w_1^* = rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

• If our model is  $H(x) = w_0$ , it is a line that is forced to have a slope of 0, i.e. a horizontal line. This is the same as the constant model from before.

$$w_0^* = \operatorname{Mean}(y_1, y_2, \dots, y_n)$$

• Key idea:  $w_0^*$  above is **not** necessarily equal to  $w_0^*$  for the simple linear regression model!

#### **Comparing mean squared errors**



$$ext{MSE} = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- The MSE of the best simple linear regression model is  $\approx 97$ .
- The MSE of the best constant model is  $\approx 167$ .
- The simple linear regression model is a more flexible version of the constant model.

## **Dot products**

#### Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
  - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
  - Use multiple features (input variables).
  - $\circ\;$  Are non-linear, e.g.  $H(x)=w_0+w_1x+w_2x^2.$
- Before we dive in, let's review.

#### **Spans of vectors**

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of one or more vectors.
- To jump start our review of linear algebra, let's start by watching this video by 3blue1brown.



## Warning 👃

- We're **not** going to cover every single detail from your linear algebra course.
- There will be facts that you're expected to remember that we won't explicitly say.
  - $\circ$  For example, if A and B are two matrices, then  $AB \neq BA$ .
  - This is the kind of fact that we will only mention explicitly if it's directly relevant to what we're studying.
  - But you still need to know it, and it may come up in homework questions.
- We will review the topics that you really need to know well.

#### Vectors

- A vector in  $\mathbb{R}^n$  is an ordered collection of n numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as **columns**.

$$ec{v} = egin{bmatrix} 8 \ 3 \ -2 \ 5 \end{bmatrix}$$

- Another way of writing the above vector is  $\vec{v} = [8, 3, -2, 5]^\intercal$ .
- Since  $ec{v}$  has four **components**, we say  $ec{v} \in \mathbb{R}^4$ .

#### The geometric interpretation of a vector

• A vector 
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 is an arrow to the point  $(v_1, v_2, \dots, v_n)$  from the origin.

• The length, or  $L_2$  norm, of  $ec{v}$  is:

$$\|ec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

• A vector is sometimes described as an object with a **magnitude/length** and **direction**.



#### **Dot product: coordinate definition**

• The **dot product** of two vectors  $\vec{u}$  and  $\vec{v}$  in  $\mathbb{R}^n$  is written as:

$$ec{u}\cdotec{v}=ec{u}{}^{ extsf{ iny transform}}ec{v}$$

• The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^nu_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The result is a **scalar**, i.e. a single number.





#### Answer at q.dsc40a.com

Which of these is another expression for the length of  $\vec{v}$ ?

- A.  $\vec{v} \cdot \vec{v}$
- B.  $\sqrt{ec{v}^2}$
- C.  $\sqrt{\vec{v}\cdot\vec{v}}$
- D.  $ec{v}^2$
- E. More than one of the above.

#### **Dot product: geometric definition**

• The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^nu_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The geometric definition of the dot product:

 $ec{u}\cdotec{v}=\|ec{u}\|\|ec{v}\|\cos heta$ 

where  $\theta$  is the angle between  $\vec{u}$  and  $\vec{v}$ .

• The two definitions are equivalent! This equivalence allows us to find the angle  $\theta$  between two vectors.





#### Answer at q.dsc40a.com

What is the value of  $\theta$  in the plot to the right?



#### **Orthogonal vectors**

- Recall:  $\cos 90^\circ = 0$ .
- Since  $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$ , if the angle between two vectors is  $90^{\circ}$ , their dot product is  $\|\vec{u}\| \|\vec{v}\| \cos 90^{\circ} = 0$ .
- If the angle between two vectors is  $90^{\circ}$  , we say they are perpendicular, or more generally, **orthogonal**.
- Key idea:

 $ext{two vectors are orthogonal} \iff ec{u} \cdot ec{v} = 0$ 

#### Exercise

Find a non-zero vector in  $\mathbb{R}^3$  orthogonal to:

$$ec{v} = egin{bmatrix} 2 \ 5 \ -8 \end{bmatrix}$$

# **Spans and projections**

#### Adding and scaling vectors

• The sum of two vectors  $\vec{u}$  and  $\vec{v}$  in  $\mathbb{R}^n$  is the element-wise sum of their components:

$$ec{u}+ec{v}=egin{bmatrix} u_1+v_1\ u_2+v_2\ dots\ u_n+v_n \end{bmatrix}$$

• If *c* is a scalar, then:

$$cec{v} = egin{bmatrix} cv_1 \ cv_2 \ dots \ cv_n \end{bmatrix}$$



### **Linear combinations**

- Let  $ec{v}_1$ ,  $ec{v}_2$ , ...,  $ec{v}_d$  all be vectors in  $\mathbb{R}^n$ .
- A linear combination of  $\vec{v}_1, \vec{v}_2, ..., \vec{v}_d$  is any vector of the form:

 $a_1ec v_1+a_2ec v_2+\ldots+a_dec v_d$ 

where  $a_1, a_2, ..., a_d$  are all scalars.

### Span

- Let  $\vec{v}_1$ ,  $\vec{v}_2$ , ...,  $\vec{v}_d$  all be vectors in  $\mathbb{R}^n$ .
- The **span** of  $\vec{v}_1, \vec{v}_2, ..., \vec{v}_d$  is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$ext{span}(ec{v}_1,ec{v}_2,\ldots,ec{v}_d) = \{a_1ec{v}_1+a_2ec{v}_2+\ldots+a_dec{v}_d:a_1,a_2,\ldots,a_n\in\mathbb{R}\}$$

# Exercise Let $\vec{v}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ and let $\vec{v}_2 = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$ . Is $\vec{y} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$ in span $(\vec{v}_1, \vec{v}_2)$ ?

If so, write  $\vec{y}$  as a linear combination of  $\vec{v_1}$  and  $\vec{v_2}$ .

#### Projecting onto a single vector

- Let  $\vec{x}$  and  $\vec{y}$  be two vectors in  $\mathbb{R}^n$ .
- The span of  $\vec{x}$  is the set of all vectors of the form:

#### $w\vec{x}$

where  $w \in \mathbb{R}$  is a scalar.

- Question: What vector in span $(\vec{x})$  is closest to  $\vec{y}$ ?
- The vector in  $\operatorname{span}(\vec{x})$  that is closest to  $\vec{y}$  is the projection of  $\vec{y}$ onto  $\operatorname{span}(\vec{x})$ .



### **Projection error**

- Let  $\vec{e} = \vec{y} w\vec{x}$  be the projection error: that is, the vector that connects  $\vec{y}$ to span $(\vec{x})$ .
- Goal: Find the w that makes  $\vec{e}$  as short as possible.
  - That is, minimize:

#### $\|ec{e}\|$

• Equivalently, minimize:

 $\|ec{y} - wec{x}\|$ 

• Idea: To make  $\vec{e}$  has short as possible, it should be orthogonal to  $w\vec{x}$ .



#### Minimizing projection error

- Goal: Find the w that makes  $\vec{e} = \vec{y} w\vec{x}$  as short as possible.
- Idea: To make  $\vec{e}$  as short as possible, it should be orthogonal to  $w\vec{x}$ .
- Can we prove that making  $\vec{e}$  orthogonal to  $w\vec{x}$  minimizes  $\|\vec{e}\|$ ?

#### Minimizing projection error

- Goal: Find the w that makes  $\vec{e} = \vec{y} w\vec{x}$  as short as possible.
- Now we know that to minimize  $\|\vec{e}\|, \vec{e}$  must be orthogonal to  $w\vec{x}$ .
- Given this fact, how can we solve for *w*?

#### **Orthogonal projection**

- Question: What vector in span( $\vec{x}$ ) is closest to  $\vec{y}$ ?
- **Answer**: It is the vector  $w^* \vec{x}$ , where:

$$w^* = rac{ec{x}\cdotec{y}}{ec{x}\cdotec{x}}$$

• Note that  $w^*$  is the solution to a minimization problem, specifically, this one:

$$\operatorname{error}(w) = \|\vec{e}\| = \|\vec{y} - w\vec{x}\|$$

• We call  $w^* \vec{x}$  the orthogonal projection of  $\vec{y}$  onto  $\operatorname{span}(\vec{x})$ .

• Think of  $w^* \vec{x}$  as the "shadow" of  $\vec{y}$ .

#### Exercise

Let 
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and  $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$ .

What is the orthogonal projection of  $\vec{a}$  onto  $\operatorname{span}(\vec{b})$ ? Your answer should be of the form  $w^*\vec{b}$ , where  $w^*$  is a scalar.

#### Moving to multiple dimensions

- Let's now consider three vectors,  $\vec{y}$ ,  $\vec{x}^{(1)}$  and  $\vec{x}^{(2)}$ , all in  $\mathbb{R}^n$ .
- Question: What vector in  $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$  is closest to  $\vec{y}$ ?
  - Vectors in  $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$  are of the form  $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$ , where  $w_1, w_2 \in \mathbb{R}$  are scalars.
- Before trying to answer, let's watch this animation that Jack, one of our tutors, made.



#### Minimizing projection error in multiple dimensions

- Question: What vector in  $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$  is closest to  $\vec{y}$ ?
  - That is, what vector minimizes  $\|\vec{e}\|$ , where:

$$ec{e} = ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}$$

- Answer: It's the vector such that  $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$  is orthogonal to  $\vec{e}$ .
- Issue: Solving for  $w_1$  and  $w_2$  in the following equation is difficult:

$$\left(w_1 ec{x}^{(1)} + w_2 ec{x}^{(2)}
ight) \cdot \underbrace{\left(ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}
ight)}_{ec{e}} = 0$$

#### What's next?

• It's hard for us to solve for  $w_1$  and  $w_2$  in:

$$\left(w_1 ec{x}^{(1)} + w_2 ec{x}^{(2)}
ight) \cdot \underbrace{\left(ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}
ight)}_{ec{e}} = 0$$

- Solution: Combine  $\vec{x}^{(1)}$  and  $\vec{x}^{(2)}$  into a single matrix, X, and express  $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$  as a matrix-vector multiplication, Xw.
- Next time: Formulate linear regression in terms of matrices and vectors!