Lecture 5

More Simple Linear Regression

DSC 40A, Spring 2024

Announcements

- Homework 2 is due on **Thursday**. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Homework 1, Groupwork 1, and Groupwork 2 solutions are all available on Ed.
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
- If you asked for an alternate Final Exam and/or have OSD accommodations, you should've received an email from me a few days ago with the details of your Final Exam arrangement.
- You can access the Markdown source code for lectures here (potentially useful if you want to write your own notes).

Agenda

- Recap: Simple linear regression.
- Correlation.
- Interpreting the formulas.
- Connections to related models.
- Introduction to linear algebra.

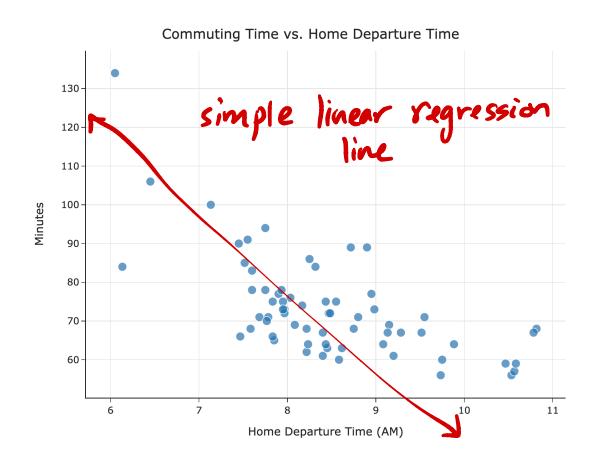
Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Simple linear regression

Recap



 In Lecture 4, our goal was to fit a simple linear regression model,

 $H(x) = w_0 + w_1 x$, to our commute times dataset.

- x_i : The ith home departure time (e.g. 8.5, for 8:30 AM).
- y_i : The ith actual commute time (e.g. 76 minutes).
- $\circ \ H(x_i)$: The ith predicted commute time.
- To do so, we used squared loss.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

Losq
$$(y_i, H(x_i)) = (y_i - H(x_i))^2$$

3. Minimize average loss to find optimal model parameters.

$$R_{52}(w_0,\omega_1) = \frac{1}{n} \sum_{i=1}^{2} \left(y_i - \left(w_0 + w_1 x_i \right) \right)$$

Least squares solutions

• Our goal was to find the parameters w_0^* and w_1^* that minimized:

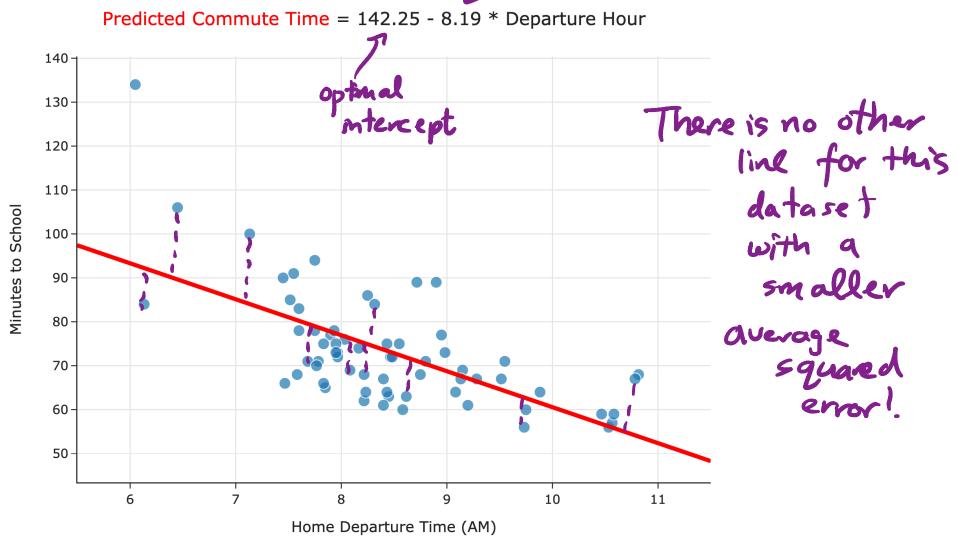
$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^{\! 2}$$

• To do so, we used calculus, and we found that the minimizing values are:

best slope
$$w_1^*=rac{\displaystyle\sum_{i=1}^n(x_i-ar{x})(y_i-ar{y})}{\displaystyle\sum_{i=1}^n(x_i-ar{x})^2}$$
 $w_0^*=ar{y}-w_1^*ar{x}$

• We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the regression line.

L'optimal slope



Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!

regression line

Answer at q.dsc40a.com

Consider a dataset with just two points, (2,5) and (4,15). Suppose we want to fit a linear

<code>hypothesis</code> function to this dataset using squared loss. What are the values of w_0^st and w_1^st

(2,5)

that minimize empirical risk?

• A.
$$w_0^* = 2$$
, $w_1^* = 5$

$$ullet$$
 B. $w_0^*\equiv 3$, $w_1^*\equiv 10$

• C.
$$w_0^* = -2$$
, $w_1^* = 5$

•D.
$$w_0^*=-5$$
, $w_1^*=5$

$$\omega_1^4 = slope = \frac{(5-5)}{4-2}$$

$$= \frac{10}{2} + \frac{5}{5}$$

intercept:

$$4.5 + w_0^* = 15$$

 $w_0^* = 15 - 20$
 $= 1 - 5$

Correlation

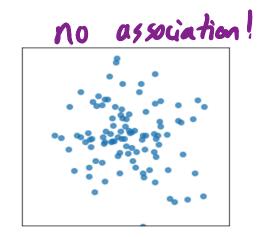
association : any pattern

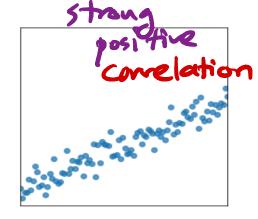
Quantifying patterns in scatter plots

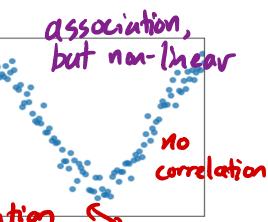
- In DSC 10, you were introduced to the idea of the **correlation coefficient**, r.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.
- -r regative: negative linear association is -r positive: positive linear association. I the closer r is to ±1, the stronger the

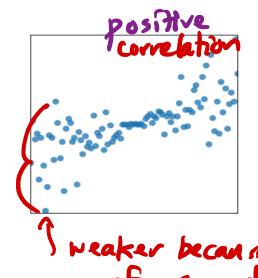
correlation: linear association

pattern that looks like
a line!









Pearson's correlation coefficient there are others

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.

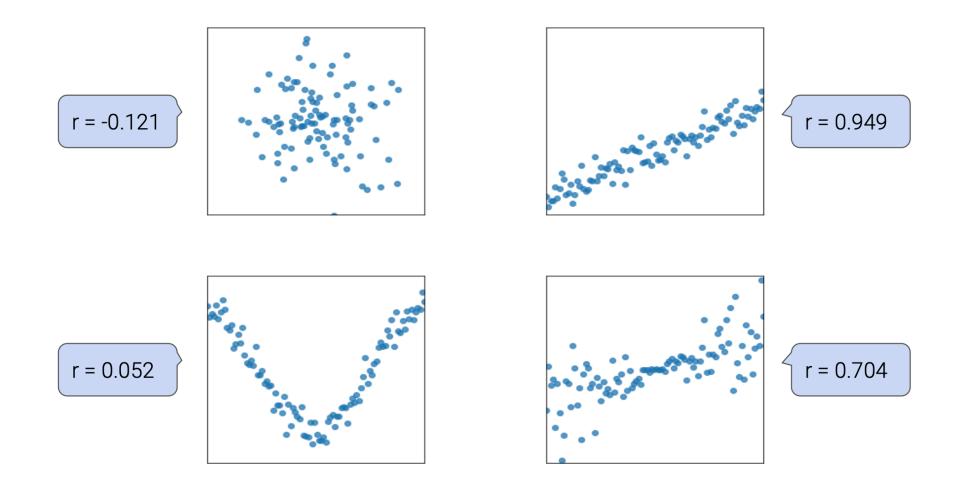
 x_i in standard units is $\frac{x_i-\bar{x}}{\sigma_x}$. — value - mean , measures the number of SDs above /below the

• The correlation coefficient, then, is:

$$r=rac{1}{n}\sum_{i=1}^{n}\left(rac{x_{i}-ar{x}}{\sigma_{x}}
ight)
otage \text{X: in } y_{i} in standard standard units$$

Question: Why multiply the SUs when calculating r? Suppose there's positive correlation. Top right: % (su) positive and Most points are in the Yi (sw) poritive. XXX top night and bottom left. Bottom left: If there's positive correlation X; (su) and on average, both >> Xi(sn) and yi(sn) will have the same sign. +:+=+ yi (su) both negative =) on average, xi(su) 'yi(su) is positive!

The correlation coefficient, visualized



Another way to express w_1^st

• It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r!

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^st and w_1^st :

$$w_1^* = r rac{\sigma_y}{\sigma_x} \qquad w_0^* = ar{y} - w_1^* ar{x}$$

Proof that
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$

$$w_1^* = \sum_{i=1}^{\infty} (x_i - \overline{x})(y_i - \overline{y})$$

$$\sum_{i=1}^{\infty} (x_i - \overline{x})^*$$

$$=\frac{rn\sigma_{x}\sigma_{y}}{n\sigma_{x}^{2}}$$

Aside
$$r = \frac{1}{n} \stackrel{?}{\underset{i=1}{\sum}} \left(\frac{x_i - \overline{x}}{\sigma_x} \right) \left(\frac{y_i - \overline{y}}{\sigma_y} \right)$$

$$r = \frac{1}{n \sigma_x \sigma_y} \stackrel{?}{\underset{i=1}{\sum}} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right)$$

$$\Rightarrow \left[r n \sigma_x \sigma_y = \stackrel{?}{\underset{i=1}{\sum}} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right]$$

$$\Rightarrow \left[r n \sigma_x \sigma_y = \stackrel{?}{\underset{i=1}{\sum}} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right]$$

$$\sigma_{x} = \sqrt{\frac{1}{n}} \hat{\xi} (x_{i} - \bar{x})^{2}$$

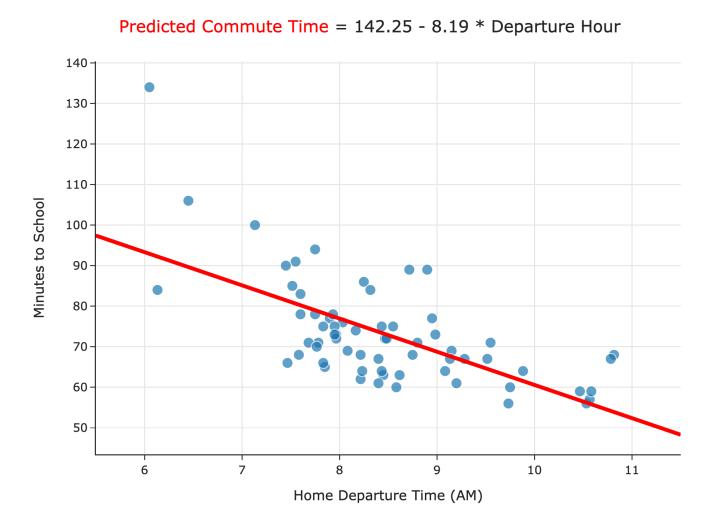
$$\sigma_{x}^{2} = \frac{1}{n} \hat{\xi} (x_{i} - \bar{x})^{2}$$

$$\Rightarrow \int n\sigma_{x}^{2} = \hat{\xi} (x_{i} - \bar{x})^{2}$$

$$\hat{\xi} (x_{i} - \bar{x})^{2}$$

$$\hat{\xi} (x_{i} - \bar{x})^{2}$$

Let's test these new formulas out in code! Follow along here.



Interpreting the formulas

no units!

Interpreting the slope

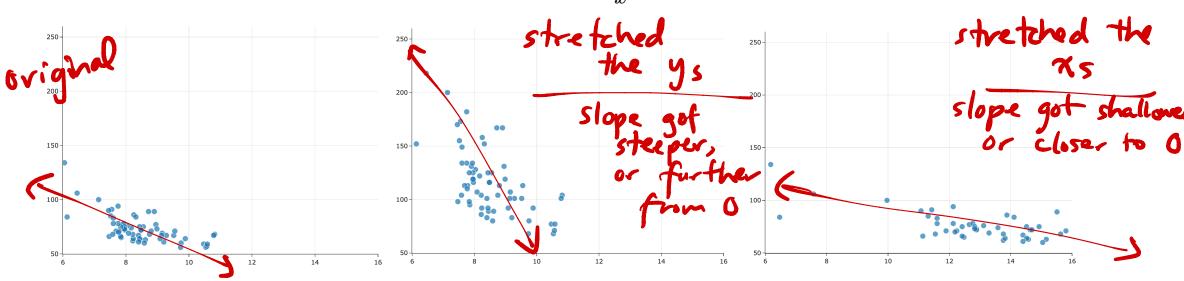
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$
 units of y

- The units of the slope are units of y per units of x.
- In our commute times example, in H(x)=142.25-8.19x, our predicted commute time decreases by 8.19 minutes per hour.

r is the same in all three graphs!

Interpreting the slope

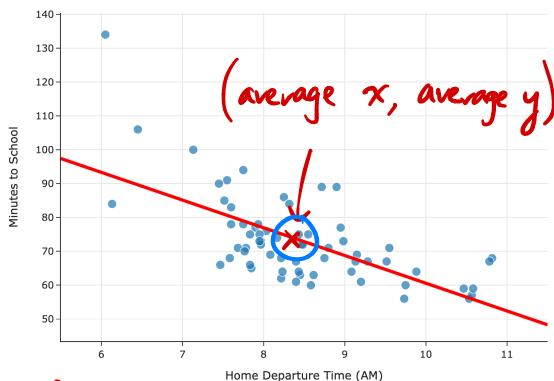
$$w_1^* = r rac{\sigma_y}{\sigma_x}$$



- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- As the x values get spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

Predicted Commute Time = 142.25 - 8.19 * Departure Hour



$$H(0) = intercept$$

= predicted

commute time @ midnight

$$w_0^*=ar{y}-w_1^*ar{x}$$

What are the units of the intercept?
 units of y: minutes

• What is the value of $H^*(\bar{x})$? $H^*(x_i) = W_0^* + W_1^* x_i$ $= \bar{y} - W_1^* \bar{x} + W_1^* x_i$ $= \bar{y} + W_1^* (\bar{x}_i - \bar{x}_i)$ $= \bar{y} + W_1^* (\bar{x}_i - \bar{x}_i)$ $= \bar{y} + W_1^* (\bar{x}_i - \bar{x}_i)$ $= \bar{y} + W_1^* (\bar{x}_i - \bar{x}_i)$

Question 🤔

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression

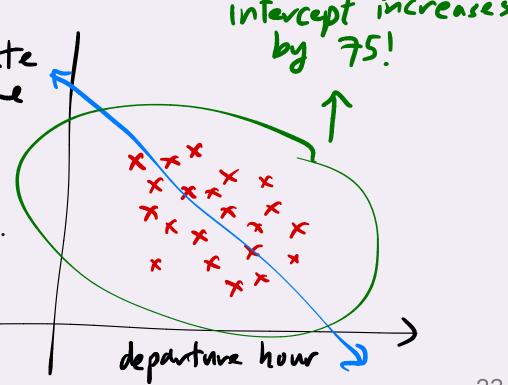
line?

• A. Slope increases, intercept increases.

• B. Slope decreases, intercept increases.

C. Slope stays the same, intercept increases.

D. Slope stays the same, intercept stays the same.



Correlation and mean squared error

• Claim: Suppose that w_0^* and w_1^* are the optimal intercept and slope for the regression line. Then,

$$R_{ ext{sq}}(w_0^*,w_1^*) = \sigma_y^2(1-\pmb{r}^2)$$

- That is, the mean squared error of the regression line's predictions and the correlation coefficient, r, always satisfy the relationship above.
- Even if it's true, why do we care?
 - \circ In machine learning, we often use both the mean squared error and r^2 to compare the performances of different models.
 - \circ If we can prove the above statement, we can show that **finding models that minimize mean squared error** is equivalent to **finding models that maximize** r^2

•

Proof that
$$R_{ ext{sq}}(w_0^*,w_1^*)=\sigma_y^2(1-r^2)$$

Connections to related models

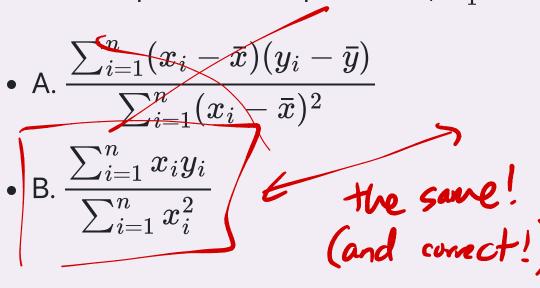
Question 👺

Answer at q.dsc40a.com

a line forced through (0,0)

Suppose we chose the model $H(x)=w_1x$ and squared loss.\

What is the optimal model parameter, w_1^* ?



$$ullet extstyle extsty$$

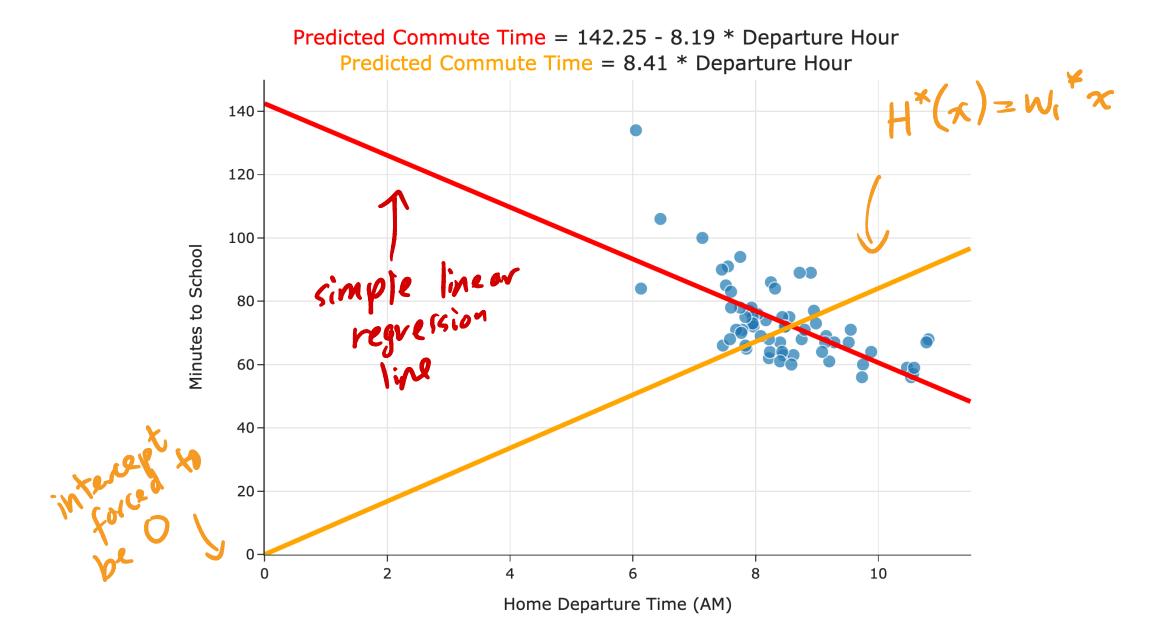
$$ullet$$
 D. $rac{\sum_{i=1}^n y_i}{\sum_{i=1}^n x_i}$

Exercise

Suppose we chose the model $H(x)=w_1x$ and squared loss.

What is the optimal model parameter,
$$w_1^*$$
?

$$R_{SQ}(w_i) = \frac{1}{n} \underbrace{\hat{\mathcal{E}}(y_i - w_i x_i)^2}_{i \ge 1} \underbrace{\frac{\hat{\mathcal{E}}(y_i - w_i x_i)^2}{\hat{\mathcal{E}}(y_i - w_i x_i)^2}}_{= \frac{1}{n} \underbrace{\hat{\mathcal{E}}(y_i - w_i x_i)^2}_{= \frac{1}{n} \underbrace{\hat{\mathcal{E}}(x_i y_i - w_i x_$$



Exercise

Suppose we choose the model $H(x)=w_0$ and squared loss.

What is the optimal model parameter, w_0^* ?

$$W_0^A = Mean(y_1, y_2, -.., y_n)$$

Comparing mean squared errors

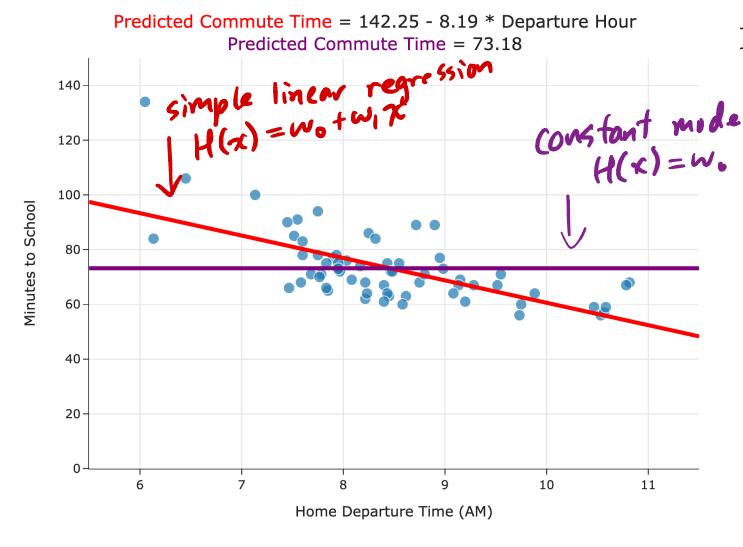
- With both:
 - \circ the constant model, H(x)=h, and
 - $\circ~$ the simple linear regression model, $H(x)=w_0+w_1x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

Which model minimizes mean squared error more?

Comparing mean squared errors



$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- The MSE of the best simple linear regression model is ≈ 97 .
- ullet The MSE of the best constant model is pprox 167.
- The simple linear regression model is a more flexible version of the constant model.

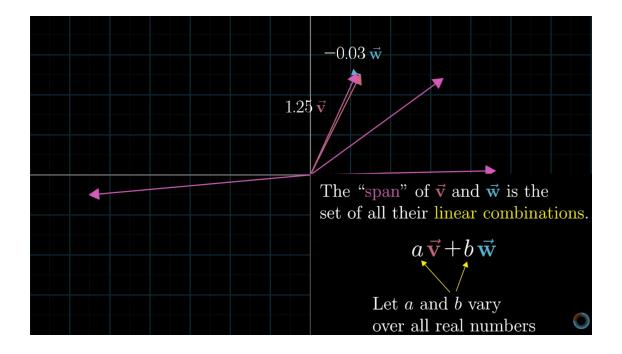
Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear, e.g. $H(x)=w_0+w_1x+w_2x^2$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of two or more vectors.
- To jump start our review of linear algebra, let's start by watching ## this video by 3blue1brown.



Next time

- We'll review the necessary linear algebra prerequisites.
- We'll then start to formulate the problem of minimizing mean squared error for the simple linear regression model using matrices and vectors.
- We'll send some relevant linear algebra review videos on Ed.