## Lecture 5

## More Simple Linear Regression

DSC 40A, Spring 2024

## Announcements

- Homework 2 is due on Thursday. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Homework 1, Groupwork 1, and Groupwork 2 solutions are all available on Ed.
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
- If you asked for an alternate Final Exam and/or have OSD accommodations, you should've received an email from me a few days ago with the details of your Final Exam arrangement.
- You can access the Markdown source code for lectures here (potentially useful if you want to write your own notes).


## Agenda

- Recap: Simple linear regression.
- Correlation.
- Interpreting the formulas.
- Connections to related models.
- Introduction to linear algebra.


## Question

## Answer at q.dsc40a.com

## Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions"
link in the top right corner of dsc40a.com.

## Recap: Simple linear regression

## Recap

- In Lecture 4, our goal was to fit a simple
 linear regression model, $H(x)=w_{0}+w_{1} x$, to our commute times dataset.
- $x_{i}$ : The $i$ th home departure time (e.g. 8.5, for 8:30 AM).
- $y_{i}$ : The $i$ th actual commute time (e.g. 76 minutes).
- $H\left(x_{i}\right)$ : The $i$ th predicted commute time.
- To do so, we used squared loss.


## The modeling recipe

1. Choose a model.
2. Choose a loss function.
3. Minimize average loss to find optimal model parameters.

## Least squares solutions

- Our goal was to find the parameters $w_{0}^{*}$ and $w_{1}{ }^{*}$ that minimized:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- To do so, we used calculus, and we found that the minimizing values are:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- We say $w_{0}^{*}$ and $w_{1}^{*}$ are optimal parameters, and the resulting line is called the regression line.

Predicted Commute Time $=142.25$ - 8.19 * Departure Hour


## Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
- They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with multiple inputs.
- To do this, we'll need linear algebra!


## Question

## Answer at q.dsc40a.com

Consider a dataset with just two points, $(2,5)$ and $(4,15)$. Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of $w_{0}^{*}$ and $w_{1}^{*}$ that minimize empirical risk?

- A. $w_{0}^{*}=2, w_{1}^{*}=5$
- B. $w_{0}^{*}=3, w_{1}^{*}=10$
- C. $w_{0}^{*}=-2, w_{1}^{*}=5$
- D. $w_{0}^{*}=-5, w_{1}^{*}=5$

Correlation

## Quantifying patterns in scatter plots

- In DSC 10, you were introduced to the idea of the correlation coefficient, $r$.
- It is a measure of the strength of the linear association of two variables, $x$ and $y$.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1 .



## The correlation coefficient

- The correlation coefficient, $r$, is defined as the average of the product of $x$ and $y$, when both are in standard units.
- Let $\sigma_{x}$ be the standard deviation of the $x_{i} \mathrm{~s}$, and $\bar{x}$ be the mean of the $x_{i} \mathrm{~s}$.
- $x_{i}$ in standard units is $\frac{x_{i}-\bar{x}}{\sigma_{x}}$.
- The correlation coefficient, then, is:

$$
r=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)\left(\frac{y_{i}-\bar{y}}{\sigma_{y}}\right)
$$

The correlation coefficient, visualized


## Another way to express $w_{1}^{*}$

- It turns out that $w_{1}^{*}$, the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of $r$ !

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- It's not surprising that $r$ is related to $w_{1}^{*}$, since $r$ is a measure of linear association.
- Concise way of writing $w_{0}^{*}$ and $w_{1}^{*}$ :

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Proof that $w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}$

Let's test these new formulas out in code! Follow along here.


Interpreting the formulas

## Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$

- The units of the slope are units of $y$ per units of $x$.
- In our commute times example, in $H(x)=142.25-8.19 x$, our predicted commute time decreases by 8.19 minutes per hour.


## Interpreting the slope

$$
w_{1}^{*}=r \frac{\sigma_{y}}{\sigma_{x}}
$$





- Since $\sigma_{x} \geq 0$ and $\sigma_{y} \geq 0$, the slope's sign is $r$ 's sign.
- As the $y$ values get more spread out, $\sigma_{y}$ increases, so the slope gets steeper.
- As the $x$ values get more spread out, $\sigma_{x}$ increases, so the slope gets shallower.


## Interpreting the intercept

$$
w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

Predicted Commute Time $=142.25-8.19$ * Departure Hour


- What are the units of the intercept?
- What is the value of $H^{*}(\bar{x})$ ?


## Question

## Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.


## Correlation and mean squared error

- Claim: Suppose that $w_{0}^{*}$ and $w_{1}^{*}$ are the optimal intercept and slope for the regression line. Then,

$$
R_{\mathrm{sq}}\left(w_{0}^{*}, w_{1}^{*}\right)=\sigma_{y}^{2}\left(1-r^{2}\right)
$$

- That is, the mean squared error of the regression line's predictions and the correlation coefficient, $r$, always satisfy the relationship above.
- Even if it's true, why do we care?
- In machine learning, we often use both the mean squared error and $r^{2}$ to compare the performances of different models.
- If we can prove the above statement, we can show that finding models that minimize mean squared error is equivalent to finding models that maximize $r^{2}$

Proof that $R_{\mathrm{sq}}\left(w_{0}^{*}, w_{1}^{*}\right)=\sigma_{y}^{2}\left(1-r^{2}\right)$

Connections to related models

## Question

## Answer at q.dsc40a.com

Suppose we chose the model $H(x)=w_{1} x$ and squared loss.
What is the optimal model parameter, $w_{1}^{*}$ ?

- A. $\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
-C. $\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$
- B. $\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$
- D. $\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}}$


## Exercise

Suppose we chose the model $H(x)=w_{1} x$ and squared loss.
What is the optimal model parameter, $w_{1}^{*}$ ?

Predicted Commute Time $=142.25-8.19 *$ Departure Hour Predicted Commute Time $=8.41 *$ Departure Hour


## Exercise

Suppose we choose the model $H(x)=w_{0}$ and squared loss.
What is the optimal model parameter, $w_{0}^{*}$ ?

## Comparing mean squared errors

- With both:
- the constant model, $H(x)=h$, and
- the simple linear regression model, $H(x)=w_{0}+w_{1} x$,
when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- Which model minimizes mean squared error more?


## Comparing mean squared errors



$$
\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- The MSE of the best simple linear regression model is $\approx 97$.
- The MSE of the best constant model is $\approx 167$.
- The simple linear regression model is a more flexible version of the constant model.


## Linear algebra review

## Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
- Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
- Use multiple features (input variables).
- Are non-linear, e.g. $H(x)=w_{0}+w_{1} x+w_{2} x^{2}$.
- Before we dive in, let's review.


## Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the span of two or more vectors.
- To jump start our review of linear algebra, let's start by watching ieat this video by 3blue1brown.



## Next time

- We'll review the necessary linear algebra prerequisites.
- We'll then start to formulate the problem of minimizing mean squared error for the simple linear regression model using matrices and vectors.
- We'll send some relevant linear algebra review videos on Ed.

