Lecture 4

Simple Linear Regression

DSC 40A, Spring 2024

Announcements

- Homework 1 is due tonight.
- Before working on it, watch the Walkthrough Videos on problem solving and using Overleaf.
- Using the Overleaf template is required for Homework 2 (and only Homework 2).
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Center and spread.
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions"
link in the top right corner of dsc40a.com.

Recap: Center and spread

The relationship between h^{*} and $R\left(h^{*}\right)$

- Recall, for a general loss function L and the constant model $H(x)=h$, empirical risk is of the form:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, h\right)
$$

- h^{*}, the value of h that minimizes empirical risk, represents the center of the dataset in some way.
- $R\left(h^{*}\right)$, the smallest possible value of empirical risk, represents the spread of the dataset in some way.
- The specific center and spread depend on the choice of loss function.

Examples

When using squared loss:

- $h^{*}=\operatorname{Mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
- $R_{\mathrm{sq}}\left(h^{*}\right)=\operatorname{Variance}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

When using absolute loss:

- $h^{*}=\operatorname{Median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- $R_{\text {abs }}\left(h^{*}\right)=$ MAD from the median.

$$
R_{\mathrm{abs}}(h)=\frac{1}{5}(|72-h|+|90-h|+|61-h|+|85-h|+|92-h|)
$$

0-1 loss

- The empirical risk for the 0-1 loss is:

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0 & y_{i}=h \\ 1 & y_{i} \neq h\end{cases}
$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- $R_{0,1}(h)$ is minimized when $h^{*}=\operatorname{Mode}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
- Therefore, $R_{0,1}\left(h^{*}\right)$ is the proportion of data points not equal to the mode.
- Example: What's the proportion of values not equal to the mode in the dataset $2,3,3,4,5$?

A poor way to measure spread

- The minimum value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very basic way of measuring the center of the data, $R_{0,1}\left(h^{*}\right)$ is a very basic and uninformative way of measuring spread.

Summary of center and spread

- Different loss functions $L\left(y_{i}, h\right)$ lead to different empirical risk functions $R(h)$, which are minimized at various measures of center.
- The minimum values of empirical risk, $R\left(h^{*}\right)$, are various measures of spread.
- There are many different ways to measure both center and spread; these are sometimes called descriptive statistics.

Simple linear regression

What's next?

Commuting Time vs. Home Departure Time

- In Lecture 1, we introduced the idea of a hypothesis function, $H(x)$.
- We've focused on finding the best constant model, $H(x)=h$.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x)=w_{0}+w_{1} x$.
- This will allow us to make predictions that aren't all the same for every data point.

Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.
Parameters define the relationship between the input and output of a hypothesis function.
The simple linear regression model, $H(x)=w_{0}+w_{1} x$, has two parameters: w_{0} and w_{1}.

The modeling recipe

1. Choose a model.
2. Choose a loss function.
3. Minimize average loss to find optimal model parameters.

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^{*}(x)$ that minimizes empirical risk:

$$
R_{s q}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- Since linear hypothesis functions are of the form $H(x)=w_{0}+w_{1} x$, we can re-write R_{sq} as a function of w_{0} and w_{1} :

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- How do we find the parameters w_{0}^{*} and w_{1}^{*} that minimize $R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)$?

Loss surface

For the constant model, the graph of $R_{\mathrm{sq}}(h)$ looked like a parabola.

What does the graph of $R_{\text {sq }}\left(w_{0}, w_{1}\right)$ look like for the simple linear regression model?

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

- Our goal is to find the parameters w_{0}^{*} and w_{1}^{*} that minimize mean squared error:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- R_{sq} is a function of two variables: w_{0} and w_{1}.
- To minimize a function of multiple variables:
- Take partial derivatives with respect to each variable.
- Set all partial derivatives to 0 .
- Solve the resulting system of equations.
- Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).

Example

Find the point (x, y, z) at which the following function is minimized.

$$
f(x, y)=x^{2}-8 x+y^{2}+6 y-7
$$

Minimizing mean squared error

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

To find the w_{0}^{*} and w_{1}^{*} that minimize $R_{\text {sq }}\left(w_{0}, w_{1}\right)$, we'll:

1. Find $\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}$ and set it equal to 0 .
2. Find $\frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}$ and set it equal to 0 .

3 . Solve the resulting system of equations.

Question

Answer at q.dsc40a.com

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

Which of the following is equal to $\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}$?

- A. $\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
- C. $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}$
- B. $-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$
- D. $-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)$

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

$$
\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}}=
$$

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

$$
\frac{\partial R_{\mathrm{sq}}}{\partial w_{1}}=
$$

Strategy

We have a system of two equations and two unknowns (w_{0} and w_{1}):

$$
-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0 \quad-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0
$$

To proceed, we'll:

1. Solve for w_{0} in the first equation.

The result becomes w_{0}^{*}, because it's the "best intercept."
2. Plug w_{0}^{*} into the second equation and solve for w_{1}. The result becomes w_{1}^{*}, because it's the "best slope."

Solving for w_{0}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)=0$

Solving for w_{1}^{*}
$-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right) x_{i}=0$

Least squares solutions

We've found that the values w_{0}^{*} and w_{1}^{*} that minimize R_{sq} are:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

where:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

These formulas work, but let's re-write w_{1}^{*} to be a little more symmetric.

An equivalent formula for w_{1}^{*}

Claim:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right) x_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) x_{i}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Proof:

Least squares solutions

- The least squares solutions for the intercept w_{0} and slope w_{1} are:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}^{*}=\bar{y}-w_{1} \bar{x}
$$

- We say w_{0}^{*} and w_{1}^{*} are optimal parameters, and the resulting line is called the regression line.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- To make predictions about the future, we use $H^{*}(x)=w_{0}^{*}+w_{1}^{*} x$.

Let's test these formulas out in code! Follow along here.

Causality

Can we conclude that leaving later causes you to get to school earlier?

What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions.
Next, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
- They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss causality.
- Learn how to build regression models with multiple inputs.
- To do this, we'll need linear algebra!

