Lecture 4

Simple Linear Regression

DSC 40A, Spring 2024

Announcements

- Homework 1 is due tonight.
 - Before working on it, watch the Walkthrough Videos on problem solving and using Overleaf.
 - Using the Overleaf template is required for Homework 2 (and only Homework 2).
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Center and spread.
- Simple linear regression.
- Minimizing mean squared error for the simple linear model.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Center and spread

The relationship between h^{\ast} and $R(h^{\ast})$

• Recall, for a general loss function L and the constant model H(x) = h, empirical risk is of the form:

$$R(h)=rac{1}{n}\sum_{i=1}^n L(y_i,h)$$

- h^* , the value of h that minimizes empirical risk, represents the **center** of the dataset in some way.
- $R(h^*)$, the smallest possible value of empirical risk, represents the **spread** of the dataset in some way.
- The specific center and spread depend on the choice of loss function.

Examples

When using squared loss:

When using **absolute loss**:

7

0-1 loss

• The empirical risk for the 0-1 loss is:

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0 & y_i=h\ 1 & y_i
eq h \end{cases}$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- $R_{0,1}(h)$ is minimized when $h^* = \operatorname{Mode}(y_1, y_2, \ldots, y_n).$
- Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.
- **Example**: What's the proportion of values not equal to the mode in the dataset 2, 3, 3, 4, 5?

A poor way to measure spread

- The minimum value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very basic way of measuring the center of the data, $R_{0,1}(h^*)$ is a very basic and uninformative way of measuring spread.

Summary of center and spread

- Different loss functions $L(y_i, h)$ lead to different empirical risk functions R(h), which are minimized at various measures of **center**.
- The minimum values of empirical risk, $R(h^*)$, are various measures of **spread**.
- There are many different ways to measure both center and spread; these are sometimes called **descriptive statistics**.

Simple linear regression

What's next?

- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, H(x) = h.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x) = w_0 + w_1 x.$
- This will allow us to make predictions that aren't all the same for every data point.

Recap: Hypothesis functions and parameters

A hypothesis function, H, takes in an x as input and returns a predicted y.

Parameters define the relationship between the input and output of a hypothesis function.

The simple linear regression model, $H(x) = w_0 + w_1 x$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^*(x)$ that minimizes empirical risk:

$$R_{sq}(H)=rac{1}{n}\sum_{i=1}^n \left(y_i-H(x_i)
ight)^2$$

• Since linear hypothesis functions are of the form $H(x)=w_0+w_1x$, we can re-write $R_{
m sq}$ as a function of w_0 and w_1 :

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i))^2
ight.$$

- How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

Loss surface

For the constant model, the graph of $R_{ m sq}(h)$ looked like a parabola.

What does the graph of $R_{
m sq}(w_0,w_1)$ look like for the simple linear regression model?

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$, we'll:

1. Find
$$\frac{\partial R_{sq}}{\partial w_0}$$
 and set it equal to 0.
2. Find $\frac{\partial R_{sq}}{\partial w_1}$ and set it equal to 0.

3. Solve the resulting system of equations.

Answer at q.dsc40a.com

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

Which of the following is equal to $\frac{\partial R_{sq}}{\partial w_0}$?

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 \ &rac{\partial R_{ ext{sq}}}{\partial w_0} &= \end{aligned}$$

$$egin{aligned} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 \ &rac{\partial R_{ ext{sq}}}{\partial w_1} &= \end{aligned}$$

Strategy

We have a system of two equations and two unknowns (w_0 and w_1):

$$-rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n \left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

To proceed, we'll:

1. Solve for w_0 in the first equation.

The result becomes w_0^* , because it's the "best intercept."

2. Plug w_0^* into the second equation and solve for w_1 .

The result becomes w_1^* , because it's the "best slope."

Solving for w_0^*

$$-rac{2}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight) = 0$$

Solving for w_1^*

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i=0}$$

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i \qquad \qquad ar{y}=rac{1}{n}\sum_{i=1}^n y_i$$

These formulas work, but let's re-write w_1^* to be a little more symmetric.

An equivalent formula for w_1^st

Claim:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i}$$

Proof:

Least squares solutions

• The least squares solutions for the intercept w_0 and slope w_1 are:

$$egin{aligned} & w_1^* = rac{\sum\limits_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sum\limits_{i=1}^n (x_i - ar{x})^2} & w_0^* = ar{y} - w_1 ar{x} \end{aligned}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the **regression line**.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- To make predictions about the future, we use $igg| H^*(x) = w_0^* + w_1^* x igg|$

Let's test these formulas out in code! Follow along here.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Home Departure Time (AM)

Causality

Can we conclude that leaving later **causes** you to get to school earlier?

31

What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions. Next, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss *causality*.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!