Lecture 3

Comparing Loss Functions

DSC 40A, Spring 2024

Announcements

- Homework 1 is due on Thursday, April 11th.
 - Before working on it, watch the Walkthrough Videos on problem solving and using Overleaf.
 - Using the Overleaf template is required for Homework 2 (and only Homework 2).
- Look at the office hours schedule here and plan to start regularly attending!
- Remember to take a look at the supplementary readings linked on the course website.

Agenda

- Recap: Empirical risk minimization.
- Choosing a loss function.
 - The role of outliers.
- Center and spread.
- Towards linear regression.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

Recap: Empirical risk minimization

Goal

We had one goal in Lecture 2: given a dataset of values from the past, **find the best** constant prediction to make.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

Key idea: Different definitions of "best" give us different "best predictions."

The modeling recipe

In Lecture 2, we made two full passes through our "modeling recipe."

1. Choose a model.

$$H(x) = h$$

2. Choose a loss function.

$$L_{sq}(y_i,h) =$$

3. Minimize average dss to find optimal model parameters.

$$y_i - h$$
) $L_{abs}(y_i, h) = |y_i|$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

Empirical risk minimization

- The formal name for the process of minimizing average loss is empirical risk minimization.
- Another name for "average loss" is empirical risk.
- When we use the squared loss function, $L_{\rm sq}(y_i,h)=(y_i-h)^2$, the corresponding empirical risk is mean squared error:

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

• When we use the absolute loss function, $L_{
m abs}(y_i,h)=|y_i-h|$, the corresponding empirical risk is mean absolute error:

$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|$$

Empirical risk minimization, in general

Key idea: If $L(y_i, h)$ is any loss function, the corresponding empirical risk is:

$$R(h) = rac{1}{n} \sum_{i=1}^n L(y_i,h)$$

Answer at q.dsc40a.com

What questions do you have?

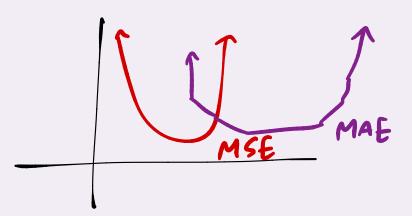
$$\left(\frac{1}{\sqrt{1}}\right)$$

$$|abs(h)| = \left(\frac{1}{n}(|y_1-h|+|y_2-h|)\right)$$

$$\left[R_{abs}(h) \right]^{2} = \left(\frac{1}{n} \left(|y_{1} - h| + |y_{2} - h| + \dots + |y_{n} - h| \right)^{2} \right)$$

$$= \frac{1}{n^{2}} \left((y_{1} - h)^{2} + |y_{1} - h| \cdot |y_{2} - h| + \dots \right) \neq R_{2}(h)$$

Answer at q.dsc40a.com



$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2 \; \int$$
 mean squared error

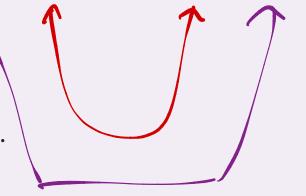
$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|$$
 mean absolute error

Is the following statement true, for any dataset y_1, y_2, \ldots, y_n and prediction h?

NOT TRUE IN GENERAL $(R_{ m a})_{ m s}(h))^2=R_{ m sq}(h)$

- A. It's true for any h and any dataset.
- ullet B. It's true for at least one h for any dataset, but not in general.
- C. It's never true.





Choosing a loss function

Now what?

- ullet We know that, for the constant model H(x)=h, the **mean** minimizes mean **squared** error.
- We also know that, for the constant model H(x)=h, the **median** minimizes mean absolute error.
- How does our choice of loss function impact the resulting optimal prediction?

61, 72, 85, 90, 92 61,72,85,90,292

Comparing the mean and median

Consider our example dataset of 5 commute times.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

$$y_2 = 90$$

$$y_3 = 61$$

$$y_4 = 85$$

$$y_5 = 92$$

- As of now, the median is 85 and the mean is 80.
- What if we add 200 to the largest commute time, 92?

$$y_1 = 72$$

$$y_2 = 90$$

$$y_3 = 61$$

$$y_4 = 85$$

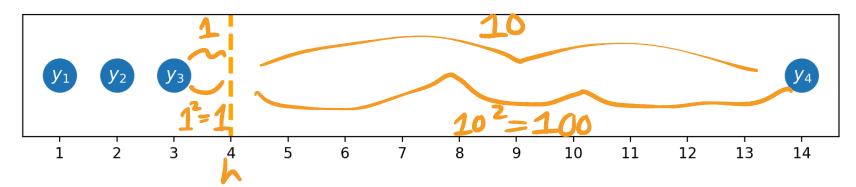
$$y_1 = 72 \qquad y_2 = 90 \qquad y_3 = 61 \qquad y_4 = 85 \qquad y_5 = 292$$

- Now, the median is still 85 but the mean is 120!

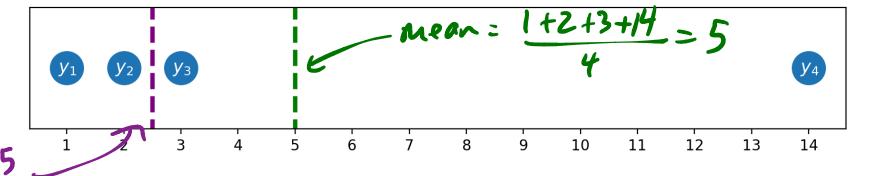
• **Key idea**: The mean is quite **sensitive** to outliers.

Outliers

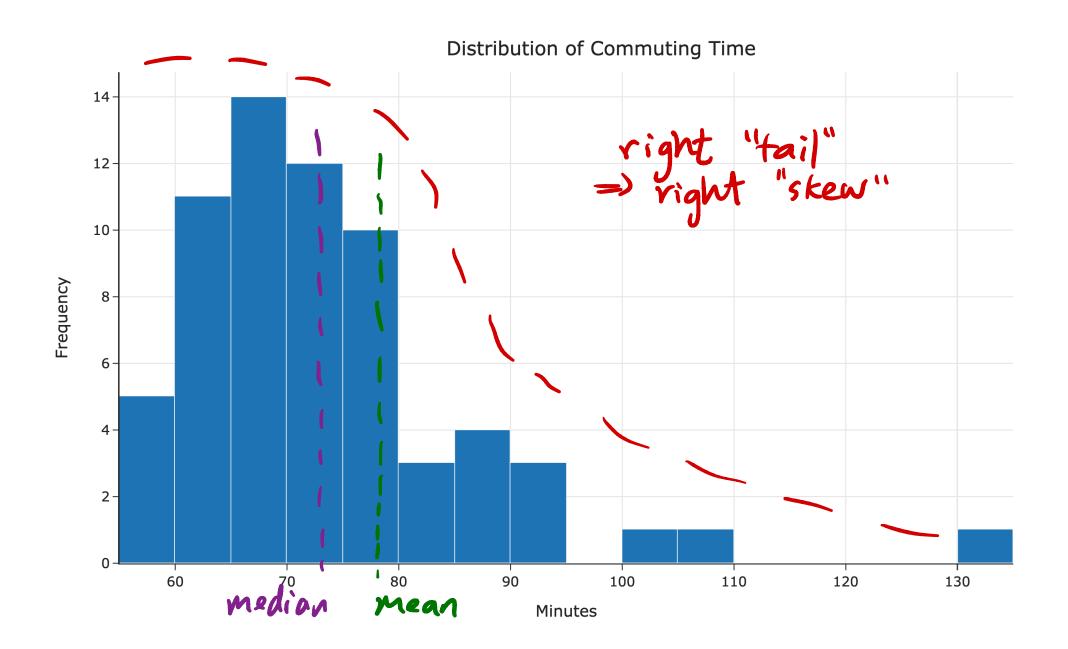
Below, $|y_4-h|$ is 10 times as big as $|y_3-h|$, but $(y_4-h)^2$ is 100 times $(y_3-h)^2$.



The result is that the **mean** is "pulled" in the direction of outliers, relative to the **median**.

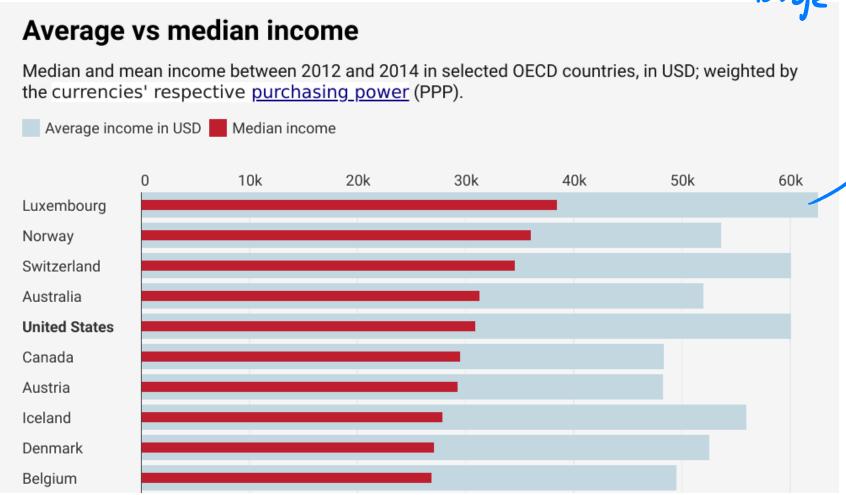


As a result, we say the **median** is **robust** to outliers. But the **mean** was easier to solve for.



Example: Income inequality

mean is influenced by large outliers

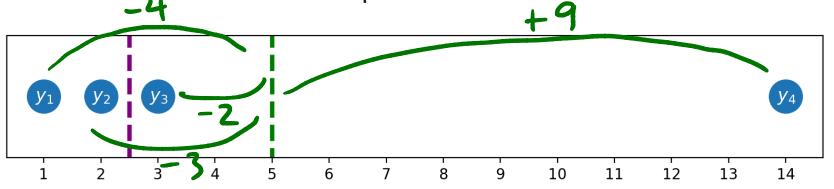


For the mean:

sum of distances = sum of distances below above

Balance points

Both the **mean** and **median** are "balance points" in the distribution.



- The **mean** is the point where $\sum_{i=1}^{n} (y_i h) = 0$.
 - This appears in Homework 1!
- The **median** is the point where $\# (y_i < h) = \# (y_i > h)$.

Here: 2 points to the left of median (41, 42), 2 points to the right of median (43, 44)

Why stop at squared loss?

	Empirical Risk, $R(\boldsymbol{h})$	Derivative of Empirical Risk, $rac{d}{dh}R(h)$	Minimizer
Mean squared error	$rac{1}{n}\sum_{i=1}^{n} y_i-h $	$rac{1}{n}ig(\sum_{y_i < h} 1 - \sum_{y_i > h} 1ig)$	median
	$rac{1}{n}\sum_{i=1}^n (y_i-h)^2$	$\frac{-2}{n} \sum_{i=1}^{n} (y_i - h)$; set this to 0	mean
	$rac{1}{n}\sum_{i=1}^n y_i-h ^3$???
if using	$rac{1}{n}\sum_{i=1}^n (y_i-h)^4$	$-\frac{4}{n}\left \frac{5}{i=1}\left(y_i-h\right)^s\right =0$???
exponent, need absolute	$rac{1}{n} \sum_{i=1}^n (y_i - h)^{100}$???
value because a	•••	•••	•••

Generalized L_p loss

For any $p \geq 1$, define the L_p loss as follows:

$$L_p(y_i,h) = |y_i-h|^p$$

The corresponding empirical risk is:

$$R_p(h)=rac{1}{n}\sum_{i=1}^n|y_i-h|^p$$

- When p=1, $h^*=\operatorname{Median}(y_1,y_2,\ldots,y_n)$.
- When p=2, $h^*=\operatorname{Mean}(y_1,y_2,\ldots,y_n)$.
- What about when p=3?
- What about when $p o \infty$?

$$||x||_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$$

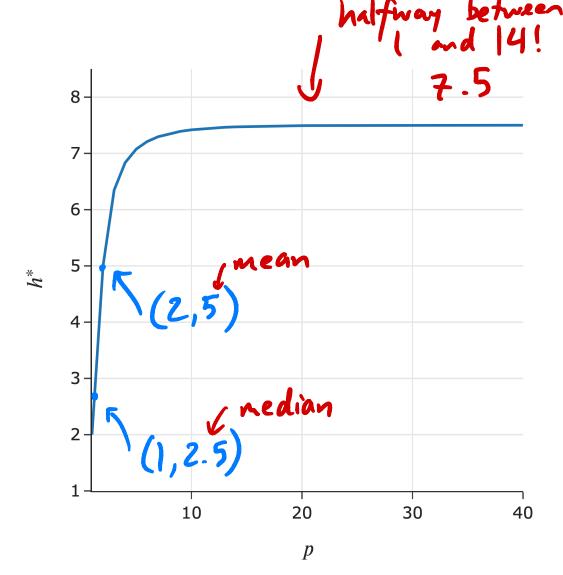
$$||x||_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$$

$$||x||_{3} = \sqrt{x_{1}^{3} + x_{2}^{3} + \dots + x_{n}^{3}}$$

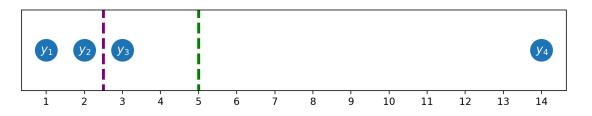
$$||x||_{160} = \sqrt{x_{1}^{100} + x_{2}^{100} + \dots + x_{n}^{100}}$$

$$||x||_{160} = \max(x_{1}, x_{2}, \dots, x_{n})$$

What value does h^* approach, as $p \to \infty$?



Consider the dataset 1, 2, 3, 14:



On the left:

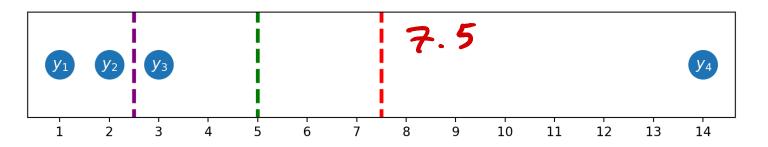
- The x-axis is p.
- The y-axis is h^{st} , the optimal constant prediction for L_p loss:

$$h^* = \operatornamewithlimits{argmin}_h rac{1}{n} \sum_{i=1}^n |y_i - h|^p$$

"infinity loss"

The $\emph{midrange}$ minimizes average L_{∞} loss!

On the previous slide, we saw that as $p \to \infty$, the minimizer of mean L_p loss approached the midpoint of the minimum and maximum values in the dataset, or the midrange.



- As $p\to\infty$, $R_p(h)=\frac{1}{n}\sum_{i=1}^n|y_i-h|^p$ minimizes the "worst case" distance from any data point". (Read more here).
- If your measure of "good" is "not far from any one data point", then the midrange is the best prediction. Mean = 5, worst case distance = |14-5/=9 | Median = 2.5, worst case distance = |14-2.5| = 11.5 | midrange = 7.5, worst case distance = |14-7.5| = 6.5

Another example: 0-1 loss

Consider, for example, the **0-1 loss**:

$$L_{0,1}(y_i,h) = egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

The corresponding empirical risk is:

$$R_{0,1}(h) = rac{1}{n} \sum_{i=1}^n L_{0,1}(y_i,h)$$

Question 🤔

Answer at q.dsc40a.com

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0 & y_i=h \ 1 & y_i
eq h \end{cases}$$
 = proportion of points

Suppose y_1, y_2, \ldots, y_n are all unique. What is $R_{0,1}(y_1)$?

- A. O.
- B. $\frac{1}{n}$.
- C. $\frac{n-1}{n}$.
- D. 1.

$$R_{0,1}(y_1) = proportion of points$$

$$= y_1$$

$$= n-1$$

Minimizing empirical risk for 0-1 loss

$$R_{0,1}(h) = rac{1}{n} \sum_{i=1}^{n} egin{cases} 0 & y_i = h \ 1 & y_i
eq h \end{cases}$$

$$= \text{propertion of points}$$
NOT equal

Minimized when
$$y_i = h$$
 as often as possible

5 set $h^+ = M_0 de(y_1, y_2, ---, y_n)$

most common value!

Summary: Choosing a loss function

Key idea: Different loss functions lead to different best predictions, h^* !

e.g. 1,2,3,5

mean = 1 + 2 + 3 + 5

4

= 1

-2 75

Loss	Minimizer	Always Unique?	Robust to Outliers?	Differentiable?
$L_{ m sq}$	mean	yes 🗸	no X	yes 🗸
$L_{ m abs}$	median	no X	yes 🗸	no X
L_{∞}	midrange	yes 🗸	no X	no X
$L_{0,1}$	mode	no X	yes <	no X

Median = 2.5

2.4

2.7

2.0001

all mhimize

mean

emr

The optimal predictions, h^* , are all **summary statistics** that measure the **center** of the dataset in different ways.

Center and spread

What does it mean?

• The general form of empirical risk, for any loss function $L(y_i,h)$, is:

$$R(h) = rac{1}{n} \sum_{i=1}^n L(y_i,h)$$

- As we just saw, the input h^* that minimizes R(h) is some measure of the **center** of the dataset.
 - \circ Examples include the mean ($L_{
 m sq}$), median ($L_{
 m abs}$), and mode ($L_{
 m 0,1}$).
- The minimum output, $R(h^*)$, represents some measure of the **spread**, or variation, in the dataset.

Squared loss

• The empirical risk for squared loss, i.e. mean squared error, is:

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2$$

- $R_{\mathrm{sq}}(h)$ is minimized when $h^* = \mathrm{Mean}(y_1, y_2, \ldots, y_n)$.
- ullet Therefore, the minimum value of $R_{
 m sq}(h)$ is:

$$egin{aligned} R_{ ext{sq}}(h^*) &= R_{ ext{sq}}\left(ext{Mean}(y_1, y_2, \dots, y_n)
ight) \ &= rac{1}{n} \sum_{i=1}^n \left(y_i - ext{Mean}(y_1, y_2, \dots, y_n)
ight)^2 \end{aligned}$$

1 2 (yi-y)

Variance

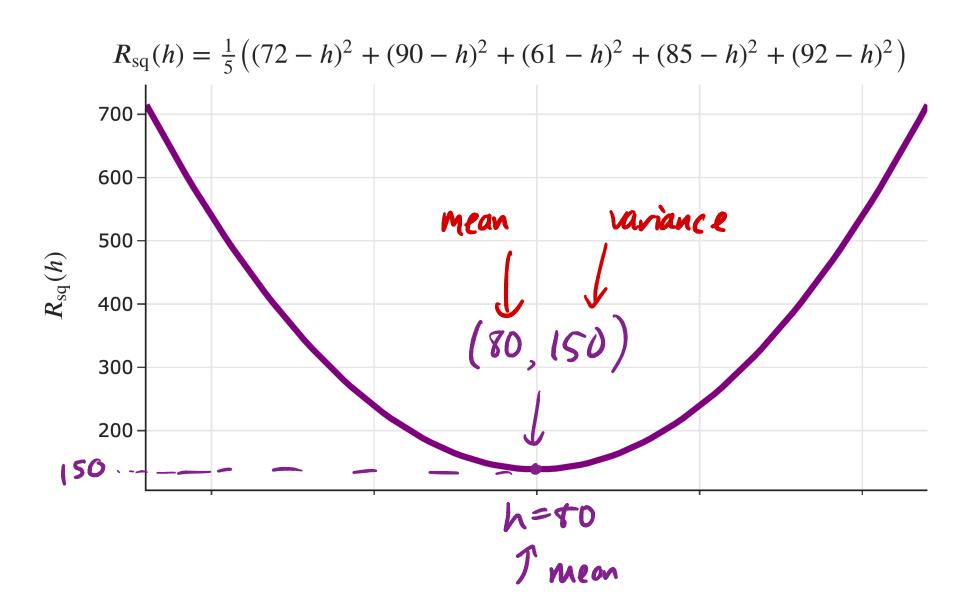
ullet The minimum value of $R_{
m sq}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$${\rm Variance}(y_1,y_2,\ldots,y_n)=\frac{1}{n}\sum_{i=1}^n(y_i-{\rm Mean}(y_1,y_2,\ldots,y_n))^2$$
 • It measures the squared distance of each data point from the mean, on average.

- Its square root is called the standard deviation.

$$R_{sq}(h^*) = Variance,$$

$$h^{4} = Mean$$



Absolute loss

• The empirical risk for absolute loss, i.e. mean absolute error, is:

$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|$$

- $R_{\mathrm{abs}}(h)$ is minimized when $h^* = \mathrm{Median}(y_1, y_2, \ldots, y_n)$.
- Therefore, the minimum value of $R_{
 m abs}(h)$ is:

$$egin{aligned} R_{ ext{abs}}(h^*) &= rac{1}{n} \sum_{i=1}^n |y_i - h| \ &= R_{ ext{abs}}(h) = rac{1}{n} \sum_{i=1}^n |y_i - \operatorname{Median}(y_1, y_2, \dots, y_n)| \end{aligned}$$

Mean absolute deviation from the median

• The minimum value of $R_{
m abs}(h)$ is the **mean absolute deviation from the median**.

$$ext{MAD from the median}(y_1, y_2, \dots, y_n) = rac{1}{n} \sum_{i=1}^n |y_i - \operatorname{Median}(y_1, y_2, \dots, y_n)|$$

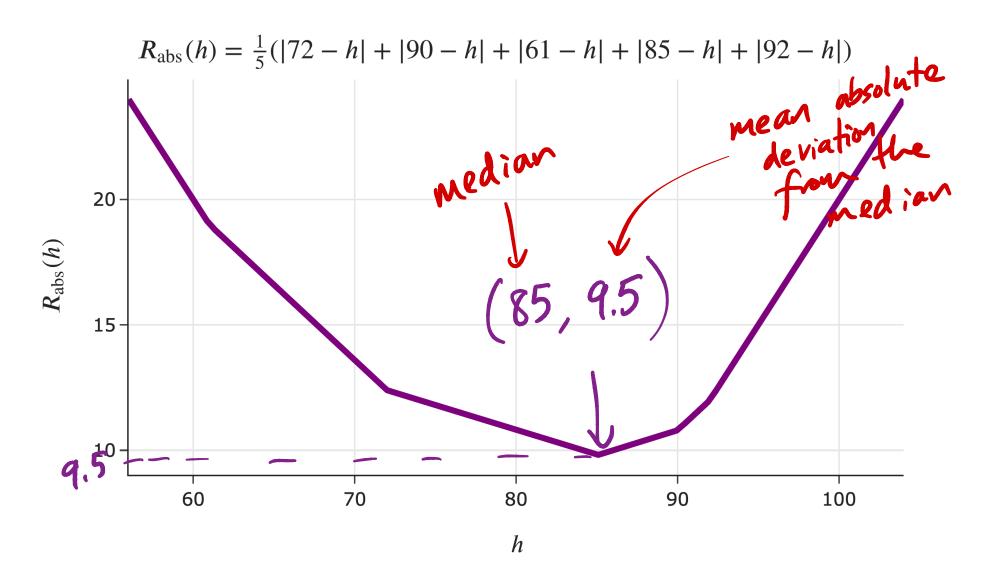
- It measures how far each data point is from the median, on average.
- Example: What's the MAD from the median in the dataset 2, 3, 3, 4, 5?

$$|2-3|=1$$

 $|3-3|=0$
 $|3-3|=0$
 $|4-3|=1$
 $|5-3|=2$

$$|3-3|=0$$
 $|3-3|=0$
 $|4-3|=1$
 $|5-3|=2$
Mean abs dev.

Mean absolute deviation from the median



0-1 loss

• The empirical risk for the 0-1 loss is:

$$R_{0,1}(h)=rac{1}{n}\sum_{i=1}^negin{cases} 0&y_i=h\ 1&y_i
eq h \end{cases}$$

- This is the proportion (between 0 and 1) of data points not equal to h.
- $R_{0,1}(h)$ is minimized when $h^* = \operatorname{Mode}(y_1, y_2, \dots, y_n)$.
- Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.
- **Example**: What's the proportion of values not equal to the mode in the dataset 2, 3, 3, 4, 5?

A poor way to measure spread

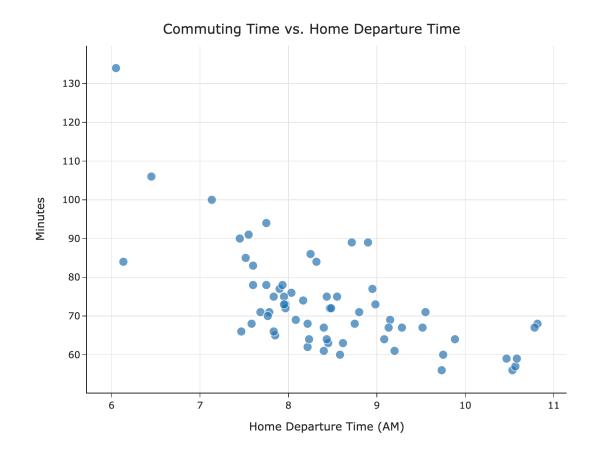
- ullet The minimum value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very basic way of measuring the center of the data, $R_{0,1}(h^*)$ is a very basic and uninformative way of measuring spread.

Summary of center and spread

- Different loss functions $L(y_i, h)$ lead to different empirical risk functions R(h), which are minimized at various measures of **center**.
- The minimum values of empirical risk, $R(h^*)$, are various measures of **spread**.
- There are many different ways to measure both center and spread; these are sometimes called **descriptive statistics**.

What's next?

Towards simple linear regression



- In Lecture 1, we introduced the idea of a hypothesis function, H(x).
- We've focused on finding the best constant model, $H(x)=\hbar$.
- Now that we understand the modeling recipe, we can apply it to find the best simple linear regression model, $H(x)=w_0+w_1x.$
- This will allow us to make predictions that aren't all the same for every data point.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.