Lecture 2

Empirical Risk Minimization

DSC 40A, Spring 2024

Announcements

- Remember, there is no Canvas: all information is at dsc40a.com.
- Please fill out the Welcome Survey if you haven't already.
- Homework 1 will be released tomorrow, and is due on Thursday, April 11th.

 - This is optional for most homeworks, but required for Homework 2, because it's a good skill to have.
- Look at the office hours schedule here and plan to start regularly attending!
- There are now readings linked on the course website for the next few weeks read them for supplementary explanations.
 - They cover the same ideas, but in a different order and with different examples.

Agenda

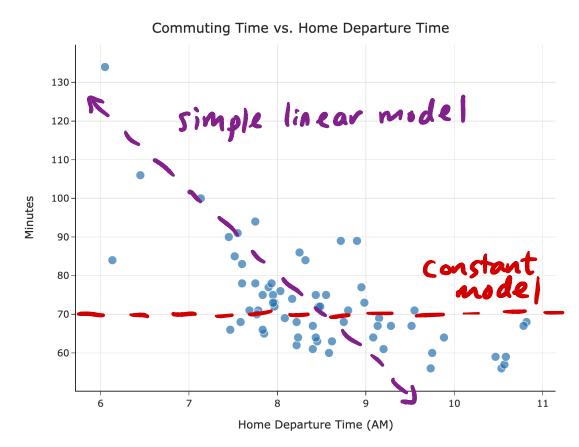
- Recap: Mean squared error.
- Minimizing mean squared error.
- Another loss function.
- Minimizing mean absolute error.
- A practice exam problem (time permitting).

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

Recap: Mean squared error

Overview



- We started by introducing the idea of a hypothesis function, H(x).
- We looked at two possible models:
 - $\circ \,$ The constant model, H(x)=h.
 - $\circ\;$ The simple linear regressionm model, $H(x)=w_0+w_1x_2$.
- We decided to find the **best constant prediction** to use for predicting commute times, in minutes.

Mean squared error

• Let's suppose we have just a smaller dataset of just five historical commute times in minutes.

$$y_1 = 72$$
 $y_2 = 90$ $y_3 = 61$ $y_4 = 85$ $y_5 = 92$

• The mean squared error of the constant prediction h is:

$$R_{
m sq}(h) = rac{1}{5}ig((72-h)^2+(90-h)^2+(61-h)^2+(85-h)^2+(92-h)^2ig)$$

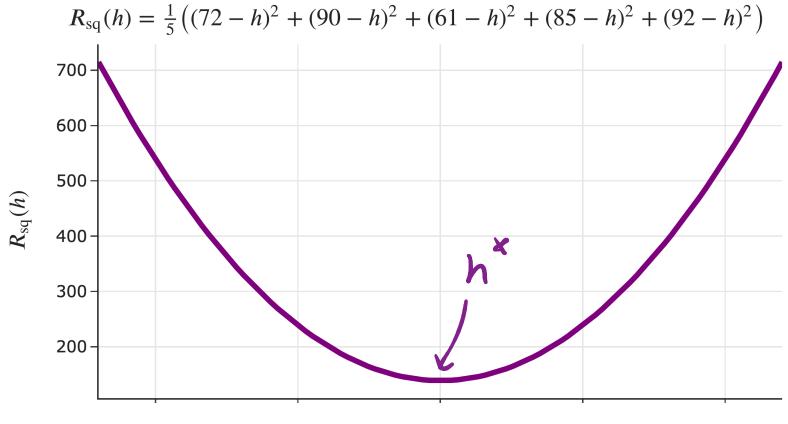
• For example, if we predict h = 100, then:

$$egin{aligned} R_{
m sq}(100) &= rac{1}{5}ig((72-100)^2+(90-100)^2+(61-100)^2+(85-100)^2+(92-100)^2ig)\ &= \boxed{538.8} \end{aligned}$$

• We can pick any h as a prediction, but the smaller $R_{
m sq}(h)$ is, the better h is!

(actual-predicted)?

Visualizing mean squared error



Which h corresponds to the vertex of $R_{
m sq}(h)$?

The best prediction

- Suppose we collect n commute times, y_1, y_2, \ldots, y_n .
- The mean squared error of the prediction h is:

$$R_{ ext{sq}}(h) = rac{1}{n}\sum_{i=1}^n(y_i-h)^2$$

- We want the **best** prediction, h^* .
- The smaller $R_{
 m sq}(h)$ is, the better h is.
- Goal: Find the h that minimizes $R_{
 m sq}(h)$. The resulting h will be called h^* .
- How do we find h^* ?

Minimizing mean squared error

Minimizing using calculus

We'd like to minimize:

$$R_{ ext{sq}}(h) = rac{1}{n}\sum_{i=1}^n(y_i-h)^2$$

In order to minimize $R_{
m sq}(h)$, we:

- 1. take its derivative with respect to h,
- 2. set it equal to 0,
- 3. solve for the resulting h^* , and

4. perform a second derivative test to ensure we found a minimum.

Step 0: The derivative of $(y_i - h)^2$

• Remember from calculus that:

$$\circ$$
 if $c(x)=a(x)+b(x)$, then
 $\circ rac{d}{dx}c(x)=rac{d}{dx}a(x)+rac{d}{dx}b(x)$.

- This is relevant because $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$ involves the sum oof n individual terms, each of which involve h.
- So, to take the derivative of $R_{
 m sq}(h)$, we'll first need to find the derivative of $(y_i-h)^2$.

$$\frac{d}{dh}(y_{i}-h)^{2} = 2(y_{i}-h)\frac{d}{dh}(y_{i}-h)$$

$$= 2(y_{i}-h)(-1)$$

$$= -2(y_{i}-h) = 2(h-y_{i})$$

 $\frac{d}{dh}(y_i-h)^2 = -2(y_i-h)$

Answer at q.dsc40a.com

Which of the following is $rac{d}{dh}R_{
m sq}(h)$?

• A.O

• B.
$$\sum_{i=1}^{n} y_i$$

• C. $\frac{1}{n} \sum_{i=1}^{n} (y_i - h)$
• D. $\frac{2}{n} \sum_{i=1}^{n} (y_i - h)$
• E. $-\frac{2}{n} \sum_{i=1}^{n} (y_i - h)$

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$
Fact:

$$F_{sq}(h)?$$
where k is some
constant, then

$$\frac{d}{dx}c(x) = k \cdot \frac{d}{dx}a(x)$$

=) we can pull the constant in front!

Step 1: The derivative of $R_{
m sq}(h)$

$$\frac{d}{dh}R_{sq}(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}(y_{i}-h)^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{2}\frac{d}{dn}\left(y_{i}-h\right)^{2}$$

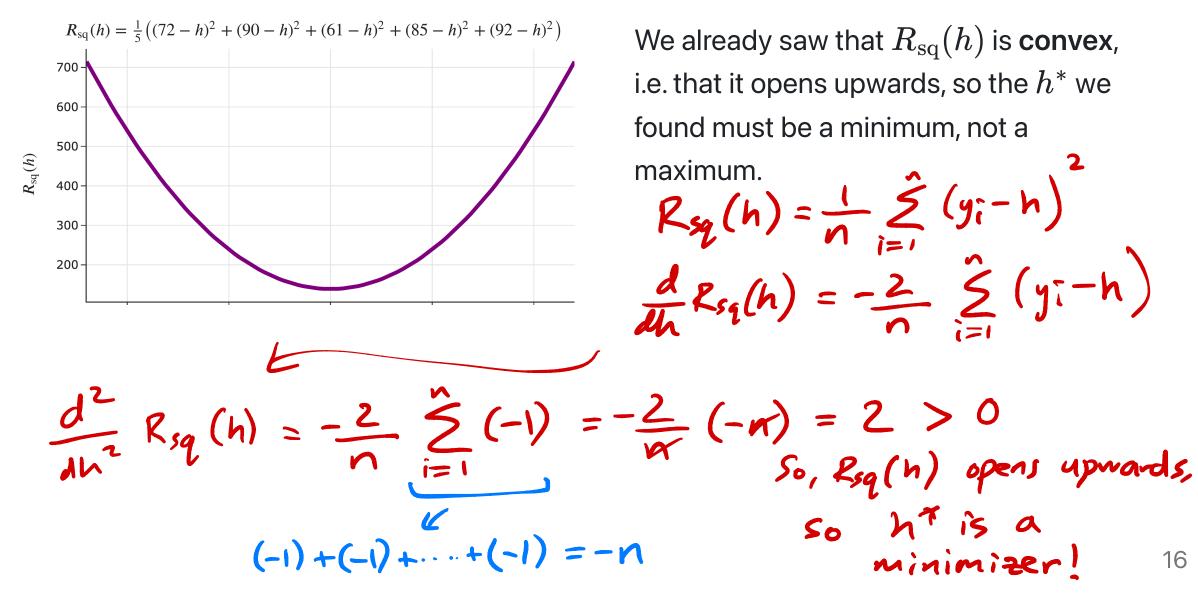
$$= \frac{1}{n}\sum_{i=1}^{2}(-2)(y_{i}-h)$$

$$= -\frac{2}{n}\sum_{i=1}^{2}(y_{i}-h)$$

Steps 2 and 3: Set to 0 and solve for the minimizer,
$$h^*$$

$$\frac{d}{dh} R_{sq}(h) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - h) = 0 \qquad \text{multiply both sides} \\
 by \left(\frac{n}{2}\right) \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = nh \qquad \hat{z} = (y_i - h) = 0 \\
 \hat{z} = (y_i - h) = 0 \\$$

Step 4: Second derivative test



16

The mean minimizes mean squared error!

• The problem we set out to solve was, find the h^* that minimizes:

$$R_{ ext{sq}}(h) = rac{1}{n}\sum_{i=1}^n(y_i-h)^2$$

• The answer is:

$$h^* = \operatorname{Mean}(y_1, y_2, \dots, y_n) = \overline{g}$$
 "g bar"

- The best constant prediction, in terms of mean squared error, is always the mean.
- We call h^* our **optimal model parameter**, for when we use:
 - $\circ\,$ the constant model, H(x)=h, and
 - $\circ\,$ the squared loss function, $L_{
 m sq}(y_i,h)=(y_i-h)^2.$

Aside: Notation

Another way of writing

 h^* is the value of h that minimizes $\frac{1}{n} \sum_{i=1}^n (y_i - h)^2$ "the argument that minimizes" $h^* = \operatorname*{argmin}_h \left(\frac{1}{n} \sum_{i=1}^n (y_i - h)^2 \right)$

is

 h^* is the solution to an **optimization problem**.

The modeling recipe

We've implicitly introduced a three-step process for finding optimal model parameters (like h^*) that we can use for making predictions:

1. Choose a model.

H(x) = h

2. Choose a loss function. $L_{q}(g_{i},h) = (g_{i}-h)^{2}$ Another choice?

3. Minimize average loss to find optimal model parameters.

$$h^{*} = Mean(y_1, y_2, \cdots, y_n)$$

Another Choice: H(x) = wo tw, x

Answer at q.dsc40a.com

What questions do you have?

Another loss function

Another loss function

• Last lecture, we started by computing the **error** for each of our predictions, but ran into the issue that some errors were positive and some were negative.

$$e_i = y_i - H(x_i)$$
 predicted

• The solution was to **square** the errors, so that all are non-negative. The resulting loss function is called **squared loss**.

$$L_{ ext{sq}}(oldsymbol{y}_i,oldsymbol{H}(x_i)) = (oldsymbol{y}_i-oldsymbol{H}(x_i))^2$$

• Another loss function, which also measures how far $H(x_i)$ is from y_i , is **absolute** loss.

$$L_{\mathrm{abs}}(oldsymbol{y}_i,oldsymbol{H}(oldsymbol{x}_i)) = |oldsymbol{y}_i - oldsymbol{H}(oldsymbol{x}_i)|$$

Squared loss vs. absolute loss

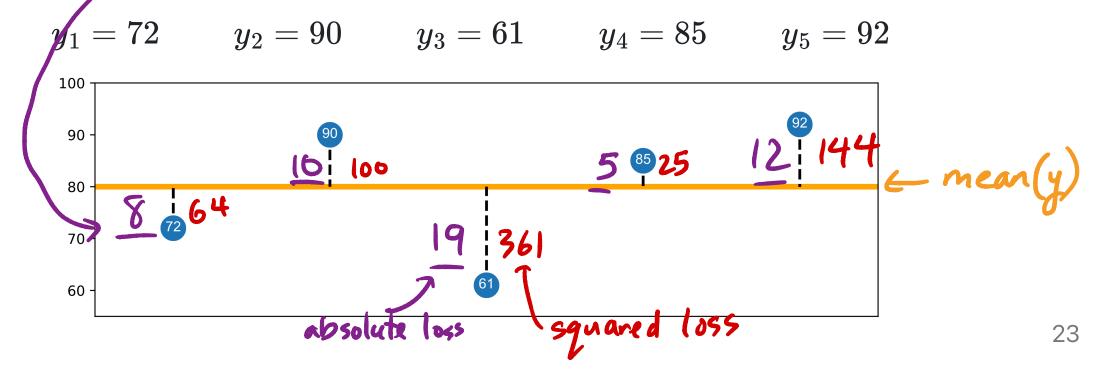
For the constant model, $H(x_i) = h$, so we can simplify our loss functions as follows: average absolute loss!

loss

80, the mean of the ys, minimizes the average squared

- Squared loss: $L_{sq}(\boldsymbol{y}_i, \boldsymbol{h}) = (\boldsymbol{y}_i \boldsymbol{h})^2$.
- Absolute loss: $L_{abs}(y_i, h) = |y_i h|$.

Consider, again, our example dataset of five commute times and the prediction h = 80.



Squared loss vs. absolute loss

- When we use squared loss, h^* is the point at which the average squared loss is minimized.
- When we use absolute loss, h^* is the point at which the average absolute loss is minimized. lows average absolute -25 $19^2 = 36$) 10-100

Mean absolute error

- Suppose we collect n commute times, y_1, y_2, \ldots, y_n .
- The **average** absolute loss, or **mean** absolute error (MAE), of the prediction h is:

$$R_{ ext{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i-h|$$

- We'd like to find the best prediction, h^* .
- Previously, we used calculus to find the optimal model parameter h^* that minimized $R_{
 m sq}$ that is, when using squared loss.
- Can we use calculus to minimize $R_{
 m abs}(h)$, too?

Minimizing mean absolute error

Minimizing using calculus, again

We'd like to minimize:

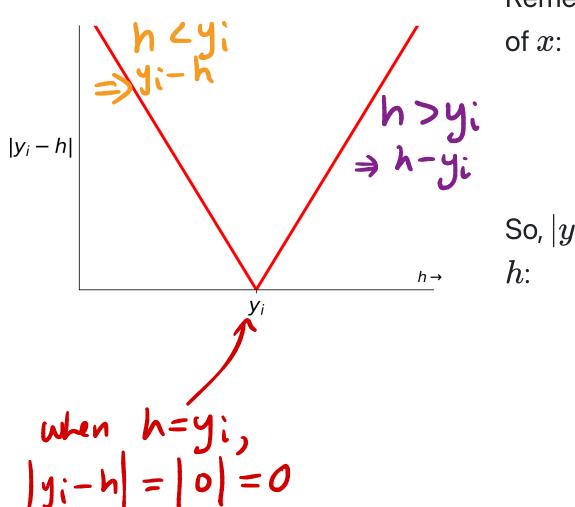
$$R_{\rm abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

first, find the derivative first, find the derivative of the holitidual of the holitidual loss!

- 1. take its derivative
- 2. set it equal to 0,
- 3. solve for the resulting h^* , and

4. perform a second derivative test to ensure we found a minimum.

Step 0: The derivative of $\left|y_{i}-h
ight|$



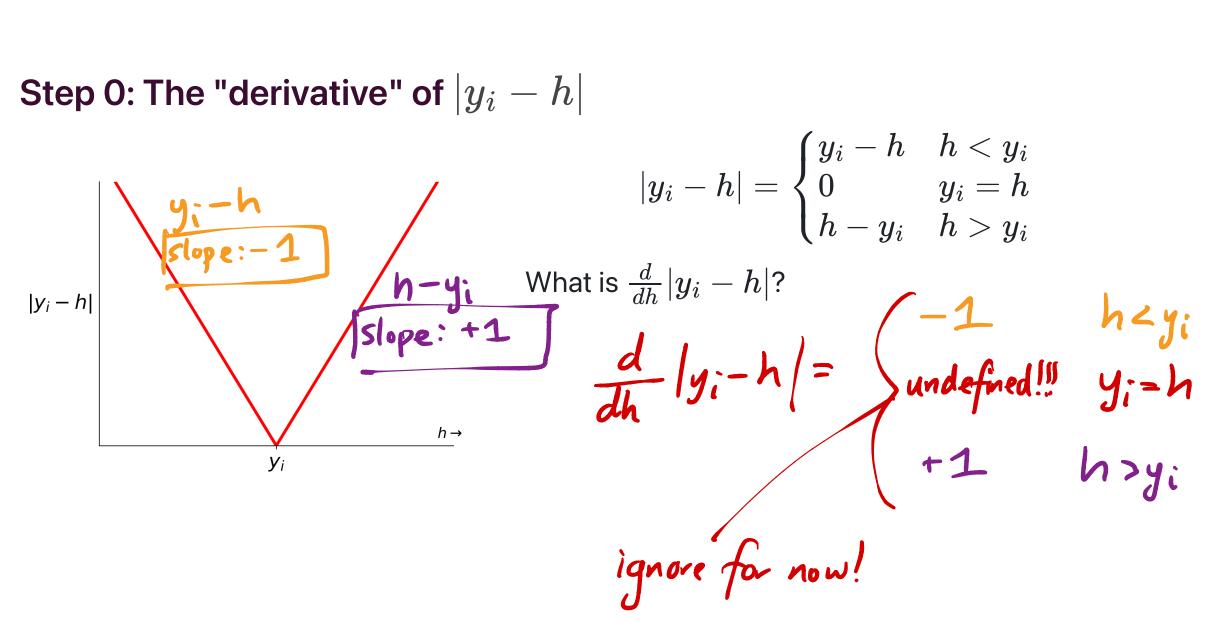
Remember that |x| is a **piecewise linear** function of x:

	$\int x$	x > 0
$ x = \langle$	0	x = 0
	$\langle -x \rangle$	x < 0

So, $|y_i - h|$ is also a piecewise linear function of

$$|y_i-h|=egin{cases} y_i-h & h < y_i \ 0 & y_i=h \ h-y_i & h > y_i \end{cases}$$

Step 0: The "derivative" of $|y_i - h|$



Step 1: The "derivative" of
$$R_{abs}(h)$$

$$\frac{d}{dh}|y_{i}-h| = \begin{pmatrix} -1 & h < y_{i} \\ undefined!!! & y_{i}-h \\ +1 & h > y_{i} \end{pmatrix}$$

$$\frac{d}{dh}R_{abs}(h) = \frac{d}{dh}\left(\frac{1}{n}\sum_{i=1}^{n}|y_{i}-h|\right) \quad ignore for now!$$

$$= \frac{1}{n}\sum_{i=1}^{n}\frac{d}{dh}\left|y_{i}-h\right| \quad n \quad a \quad sum \quad of \quad a \quad bunch \quad of \\ +1s \quad and \quad -1s \quad ! \\ we \quad +1 \quad whenever \quad h > y_{i}, \text{ and}$$

$$= \frac{1}{n}\left[\frac{H}(h > y_{i}) - \frac{H}(h < y_{i})\right] \quad \frac{H}{dh}\left(h < y_{i}\right) \quad \frac{H}{dh}\left(h < y_{i}\right) = \frac{1}{2}\sum_{i=1}^{n}\frac{H}{dh}\left(h < y_{i}\right) = \frac{1}{2}\sum_{i=1}^{n}\frac{H}{dh}\left(h < y_{i}\right) = \frac{H}{dh}\left(h < y_{i}\right) = \frac{1}{2}\sum_{i=1}^{n}\frac{H}{dh}\left(h < y_{i}\right) = \frac{1}{2}\sum_{i=1}^{n}\frac{H$$

Steps 2 and 3: Set to 0 and solve for the minimizer,
$$h^*$$

$$\frac{d}{dh} R_{abs}(h) = \frac{1}{n} \left[\frac{\#}{(h > y_i)} - \frac{\#}{(h < y_i)} \right] = 0$$
multiply both sides

$$\Rightarrow \left[\frac{\#}{(h > y_i)} \right] = \left[\frac{\#}{(h < y_i)} \right] - \frac{\#}{(h < y_i)} \right]$$
The h i that minimizes mean absolute error is
the me where

$$\# \text{ points to the left of } h =) [Median!]$$

$$= \frac{1}{median!}$$

$$= \frac{1}{median!}$$

$$= \frac{1}{median!}$$

$$= \frac{1}{median!}$$

The median minimizes mean absolute error!

• The new problem we set out to solve was, find the h^* that minimizes:

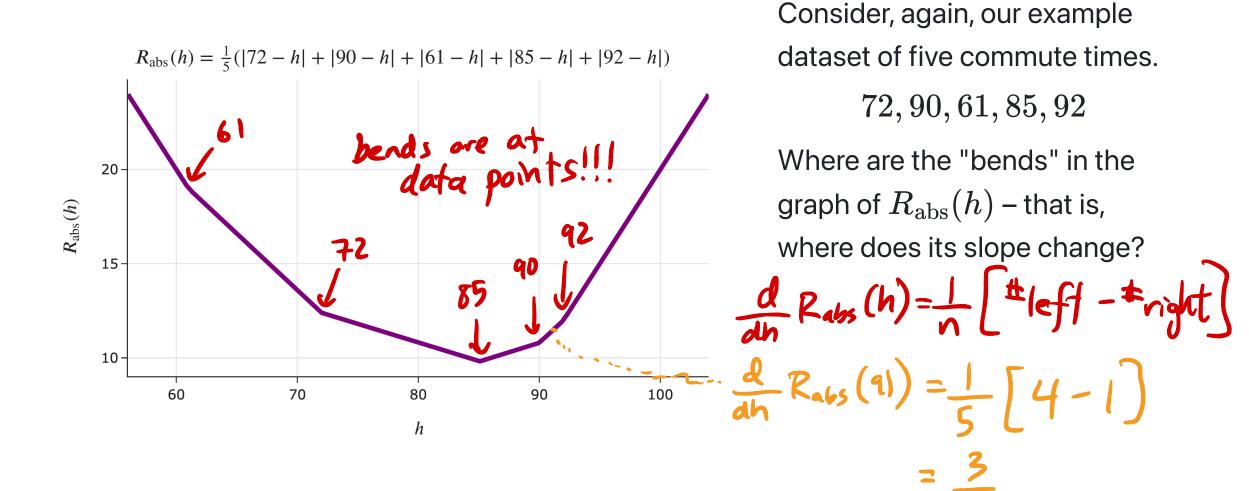
$$R_{\mathrm{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i-h|$$

• The answer is:

$$h^* = ext{Median}(y_1, y_2, \dots, y_n)$$

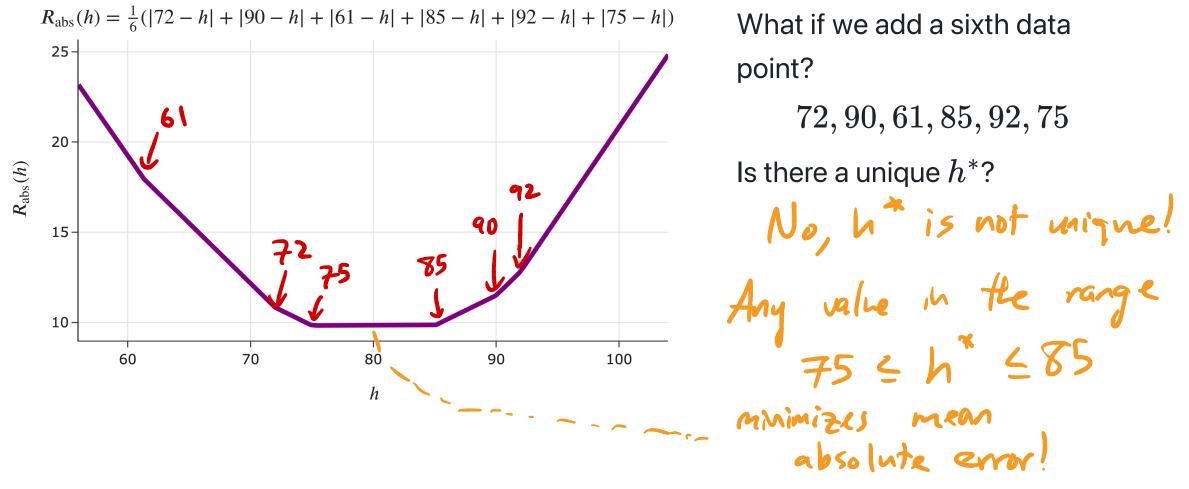
- This is because the median has an equal number of data points to the left of it and to the right of it.
- To make a bit more sense of this result, let's graph $R_{
 m abs}(h)$.

Visualizing mean absolute error



33

Visualizing mean absolute error, with an even number of points



The median minimizes mean absolute error!

• The new problem we set out to solve was, find the h^* that minimizes:

$$R_{\mathrm{abs}}(h) = rac{1}{n}\sum_{i=1}^n |y_i-h|$$

• The answer is:

$$h^* = ext{Median}(y_1, y_2, \dots, y_n)$$

- The best constant prediction, in terms of mean absolute error, is always the median.
 - \circ When n is odd, this answer is unique.
 - $\circ~$ When n is even, any number between the middle two data points (when sorted) also minimizes mean absolute error.
 - \circ When *n* is even, define the median to be the mean of the middle two data points.

The modeling recipe, again

We've now made two full passes through our "modeling recipe."

1. Choose a model. H(x) = h $L_{abs}(y_i,h) = |y_i-h|$ 2. Choose a loss function. $L_{sq}(y_i,h) = (y_i-h)^2$ 3. Minimize average os to find optimal model parameters. h= Median (y1, y2, ..., Jn) $h = Men(y, y_2, \dots, y_n)$

Empirical risk minimization

- The formal name for the process of minimizing average loss is **empirical risk minimization**.
- Another name for "average loss" is empirical risk.
- When we use the squared loss function, $L_{sq}(y_i, h) = (y_i h)^2$, the corresponding empirical risk is mean squared error:

$$R_{ ext{sq}}(h) = rac{1}{n}\sum_{i=1}^n(y_i-h)^2$$

• When we use the absolute loss function, $L_{\rm abs}(y_i,h) = |y_i - h|$, the corresponding empirical risk is mean absolute error:

$$R_{
m abs}(h) = rac{1}{n} \sum_{i=1}^{n} |y_i - h|$$
 37

Empirical risk minimization, in general

Key idea: If $L(y_i, h)$ is any loss function, the corresponding empirical risk is:

$$R(h) = rac{1}{n}\sum_{i=1}^n L(y_i,h)$$

Answer at q.dsc40a.com

What questions do you have?

Summary, next time

- $h^* = \operatorname{Mean}(y_1, y_2, \dots, y_n)$ minimizes mean squared error, $R_{\operatorname{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2.$
- $h^* = ext{Median}(y_1, y_2, \dots, y_n)$ minimizes mean absolute error, $R_{ ext{abs}}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h|.$
- $R_{
 m sq}(h)$ and $R_{
 m abs}(h)$ are examples of **empirical risk** that is, average loss.
- Next time: What's the relationship between the mean and median? What is the significance of $R_{
 m sq}(h^*)$ and $R_{
 m abs}(h^*)$?

A practice exam problem

An exam problem? Already?

- Homework 1 is going to be released tomorrow.
- In it, you'll be asked to show or prove that various facts hold true but you may have never done this before!
- To help you practice, we'll walk through an old exam problem together.
- We'll be releasing another problem walkthrough video sometime over the weekend, that also shows you how to use the Overleaf template and type up your solutions.

Define the extreme mean (EM) of a dataset to be the average of its largest and smallest values. Let f(x) = -3x + 4.

Show that for any dataset $x_1 \leq x_2 \leq \ldots \leq x_n$,

 $\operatorname{EM}(f(x_1),f(x_2),\ldots,f(x_n))=f(\operatorname{EM}(x_1,x_2,\ldots,x_n))$