DSC 40A

Theoretical Foundations of Data Science I

In This Video

Can we use linear regression to fit nonlinear functions to data?

Recommended Reading

Course Notes: Chapter 2, Section 1

Example: Parallel Processing

Problem

- Some parts of a program are necessarily sequential.
- E.g., downloading the data must happen before analysis.
- More processors do not speed up sequential code.
- ▶ But they do speed up non-sequential code.

Speedup NS N5

Amdahl's Law

The time *T* it takes to run a program on *p* processors is:

$$T(p) = t_{S} + \frac{t_{NS}}{p}$$

where t_S and t_{NS} are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Amdahl's Law

The time *T* it takes to run a program on *p* processors is:

$$T(p) = t_{S} + \frac{t_{NS}}{p}$$

where t_S and t_{NS} are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Problem: we don't know t_S and t_{NS} .

Fitting Amdahl's Law

- **Solution**: we will learn t_S and t_{NS} from data.
- Run with varying number of processors, record total time:

Find prediction rule $H(p) = \frac{t_{NS}}{p} + t_{S}$ by minimizing MSE.

General Problem

- ► Given data $(x_1, y_1), ..., (x_n, y_n)$.
- Fit a non-linear rule $H(x) = w_1 \cdot \frac{1}{x} + w_0$ by minimizing MSE:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

Using definition of *H*:

Minimizing MSE

► Take partial derivatives, set to zero, solve. You'll find:

$$w_{1} = \frac{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right) (y_{i} - \bar{y})}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}$$

Minimizing MSE

► Take partial derivatives, set to zero, solve. You'll find:

$$w_{1} = \frac{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right) (y_{i} - \bar{y})}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}$$

Define

$$z_i = \frac{1}{x_i},$$
 $\bar{z} = \frac{1}{n} \sum_{i=1}^n z_i = \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}$

$$w_1 =$$

Fitting Non-Linear Trends

To fit a prediction rule of the form $H(x) = w_1 \cdot \frac{1}{x} + w_0$:

- 1. Create a new data set $(z_1, y_1), \ldots, (z_n, y_n)$, where $z_i = \frac{1}{x_i}$.
- 2. Fit $H(z) = w_1 z + w_0$ using familiar least squares solutions:

$$w_{1} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \bar{z}$$

3. Use w_1 and w_0 in original prediction rule, H(x).

Example: Amdahl's Law

We have timed our program:

Time (Hours)
8
4
3

Fit prediction rule:
$$H(p) = \frac{t_{NS}}{p} + t_{S}$$

Example: fitting $H(x) = w_1 \cdot \frac{1}{x_i} + w_0$

Xi	Уi	Zį	$(z_i - \bar{z})$	$(y_i - \bar{y})$	$(z_i - \bar{z})(y_i - \bar{y})$	$(\mathbf{z_i} - \bar{\mathbf{z}})^2$
1	8					
2	4					
4	3					

Example: Amdahl's Law

- ightharpoonup We found: $t_{NS} = \frac{48}{7} \approx 6.88$, $t_{S} = 1$
- ► Therefore our prediction rule is:

$$H(p) = \frac{t_{NS}}{p} + t_{S}$$
$$= \frac{6.88}{p} + 1$$

Linear in the Parameters

► We can fit rules like:

$$w_1 x + w_0$$
 $w_1 \cdot \frac{1}{x} + w_0$ $w_1 x^2 + w_0$ $w_1 e^x + w_0$

We can't fit rules like:

$$e^{\mathbf{w}_1\mathbf{x}} + \mathbf{w}_0 \qquad \sin(\mathbf{w}_1\mathbf{x} + \mathbf{w}_0)$$

► Has to be linear in the parameters, or linear as a function of w_1, w_0 .

Transformations

- Try rewriting functions to see if they can be expressed as linear functions in new variables.
- Example

$$H(x)=c_0x^{c_1}$$

Transformations

$$y = c_0 x^{c_1}$$
$$\log y = \log c_0 + c_1 \log x$$

$$w_{1} = \frac{\sum_{i=1}^{n} (\log x_{i} - \frac{1}{n} \sum_{i=1}^{n} \log x_{i}) (\log y_{i} - \frac{1}{n} \sum_{i=1}^{n} \log y_{i})}{\sum_{i=1}^{n} (\log x_{i} - \frac{1}{n} \sum_{i=1}^{n} \log x_{i})^{2}}$$

$$w_{0} = \frac{1}{n} \sum_{i=1}^{n} \log y_{i} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \log x_{i}$$

General Strategy

To fit a prediction rule of the form $g(y) = w_1 \cdot f(x) + w_0$:

- 1. Create a new data set $(z_1, v_1), \ldots, (z_n, v_n)$, where $z_i = f(x_i)$ and $v_i = g(v_i)$.
- 2. Fit $v = w_1 z + w_0$ using familiar least squares solutions:

$$w_{1} = \frac{\sum_{i=1}^{n} (z_{i} - \bar{z})(v_{i} - \bar{v})}{\sum_{i=1}^{n} (z_{i} - \bar{z})^{2}} \qquad w_{0} = \bar{v} - w_{1} \cdot \bar{z}$$

where \bar{z} is the mean of the z_i 's, \bar{v} is the mean of the v_i 's.

3. If necessary, use w_0 and w_1 to find the parameters of the original prediction rule.

Summary

- We can sometimes fit nonlinear functions to data by thinking of these non-linear functions as linear functions in new variables.
- Next Time: Using linear algebra to do regression helps us fit even more non-linear functions to data and allows us to make predictions based on multiple features.
- E.g., experience, highest education level, GPA, number of internships, etc.