
You’ll find our example index cards on the next two pages.

We are not printing them out for you, and you also cannot print them out and bring them to the exam! Re-
member that the two-sided index card you bring to the exam must be handwritten, using no digital tools (no
iPads). Feel free to use the material here for inspiration, and/or add your own notes. You may also find these
index cards useful while studying.

Note that just because a concept doesn’t appear here, it doesn’t mean it won’t appear on the exam! There are
plenty of important in-scope concepts from class that don’t appear here.



Step 1: Choose a model.
Constant model: H(x) = h
Simple linear regression model: H(x) = w0 + w1x

Step 2: Choose a loss function.
Squared loss: Lsq(yi, H(xi)) = (yi − H(xi))
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Absolute loss: Labs(yi, H(xi)) = |yi − H(xi)|

Step 3: Minimize average loss (also known as empirical risk) to find optimal model parameters.
If L(yi, H(xi)) is a loss function, then empirical risk is of the form R(H) = 1

n

∑n
i=1 L(yi, H(xi)).

Constant model with squared loss: Rsq(h) = 1
n

∑n
i=1(yi − h)2 =⇒ h∗ = Mean(y1, y2, ..., yn)

Simple linear regression model with squared loss: Rsq(h) = 1
n

∑n
i=1(yi − (w0 + w1xi))
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1 x̄, where r is the correlation coefficient between x and y.

Spans, Projections, and Orthogonality
The span of vectors v⃗1, v⃗2, ..., v⃗d ∈ Rn is the set of all vectors that can be created using linear combinations
of those vectors. A linear combination is of the form a1v⃗1 + a2v⃗2 + ...+ adv⃗d, where a1, a2, ..., ad are scalars.

Example: If v⃗1 =
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 is in span(v⃗1, v⃗2).

The span of a single vector x⃗ ∈ Rn is the set of all scalar multiples of x⃗, i.e. the set of all vectors of the form wx⃗.



Of all the vectors in span(x⃗), the vector closest to y⃗ ∈ Rn is the vector w∗x⃗, where:

w
∗
=

x⃗ · y⃗
x⃗ · x⃗

w∗x⃗ is called the orthogonal projection of y⃗ onto span(x⃗). w∗ is chosen so that the length of the error vector,
e⃗ = y⃗ − w∗x⃗, is minimized. This error vector is orthogonal to x⃗, i.e. x⃗ · e⃗ = 0.

Multiple Linear Regression (MLR) and Linear Algebra
The MLR model for a single row of the dataset, i.e. a single data point, is:

H(x⃗) = w0 + w1x
(1)

+ w2x
(2)

+ ... + wdx
(d)

= w⃗ · Aug(x⃗)

If X ∈ Rn×(d+1) is a design matrix, w⃗ ∈ Rd+1 is a parameter vector, and y⃗ ∈ Rn is an observation vector, then
the predictions for an entire dataset can be written as h⃗ = Xw⃗, where h⃗ ∈ Rn is a vector containing predictions.

The mean squared error of the MLR model is:

Rsq(w⃗) =
1

n
∥y⃗ − Xw⃗∥

The w⃗∗ that minimizes Rsq(w⃗) is the w⃗∗ that satisfies the normal equations, which we found by choosing the
error vector e⃗ = y⃗ − Xw⃗∗ that is orthogonal to every column in X :

X
T
(y⃗ − Xw⃗

∗
) = 0 =⇒ X

T
Xw⃗

∗
= X

T
y⃗

If XTX is invertible (equivalently, if the columns of X are all linearly independent), then there is a unique
solution to the normal equations: w⃗∗

= (X
T
X)

−1
X

T
y⃗.


