
DSC 40A - Homework 3
due Friday, October 24th at 11:59 PM

Homeworks are due to Gradescope by 11:59PM on the due date.

You can use a slip day to extend the deadline by 24 hours; you have four slip days to use in total throughout
the quarter.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to
do a homework problem, but you cannot show them how to do it. Only handwritten solutions will
be accepted (use of tablets is permitted). Do not typeset your homework (using LATEXor any
other software).

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 66 points. The point value of each problem or sub-problem is indicated
by the number of avocados shown.

Problem 1. Reflection and Feedback Form

Make sure to fill out this Reflection and Feedback Form, linked here, for two points on this homework!
This form is primarily for your benefit; research shows that reflecting and summarizing knowledge helps you
understand and remember it.
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https://forms.gle/CfwdcGWCzs65LKdb6


Problem 2.

Prove or disprove the following statements.

a) Recall: a set of vectors is said to be linearly independent if there exists no vector in the set that
is equal to a linear combination of the other vectors in the set.

Let x⃗, y⃗, z⃗ ∈ Rn be given vectors. If {x⃗, y⃗} is linearly independent, and {x⃗, z⃗} is linearly independent,
then x⃗ cannot be written as a linear combination of y⃗ and z⃗.

b) Let x⃗ ∈ Rn and suppose there exists c ∈ R with c ̸= 0 such that x⃗⊤(cx⃗) = 0. Then x⃗ is the zero
vector.

c) Let A ∈ Rn×n be any matrix and then let

S = {x⃗ ∈ Rn : x⃗⊤Ax⃗ = 0},

i.e. S is the set of all vectors x in Rn such that x⃗⊤Ax⃗ = 0. Then S is a subspace of Rn.
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Problem 3. Nullspace to the max

Let A ∈ Rn×d be any given matrix, where n, d ≥ 1 are fixed dimensions. As a reminder, the nullspace or
kernel of a matrix is defined as

null(A) = {x⃗ ∈ Rd : Ax⃗ = 0⃗}.

a) Prove that null(A) = null(A⊤A) by completing the following steps.

(i) If x⃗ ∈ null(A), then x⃗ ∈ null(A⊤A).

(ii) If x⃗ ∈ null(A⊤A), then x⃗ ∈ null(A).

b) Use the rank-nullity theorem (see the course notes, Appendix B) and (a) to show that rank(A) =

rank(A⊤A).

c) Now suppose y⃗ ∈ Rn is a fixed vector, and consider the linear system of equations Ax⃗ = y⃗

in the unknown x⃗ ∈ Rd. Prove that there exists a unique solution x⃗∗ to this equation if and only if
A⊤A ∈ Rd×d is an invertible matrix and y⃗ belongs to the column space of A. (Note: To prove an “if
and only if” statement, there are two steps. See IF AND ONLY IF PROOFS )
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https://sawyer-jack-1.github.io/assets/teaching/tfds_book.pdf#page=133
https://www.d.umn.edu/~jgallian/Proofs.html


Problem 4. Making Connections... and Projections

Suppose we have a dataset of n points, (x1, y1), (x2, y2), ..., (xn, yn). In Groupwork 3, we proved that the
optimal parameter m∗ that minimizes mean squared error for the hypothesis function H(x) = mt is:

m∗ =

n∑
i=1

tiyi

n∑
i=1

t2i

(There, we used the variable w instead of m; we’ve used m above to avoid conflicting with a different
definition of w below.)

In this problem, we’ll derive the same result using our knowledge of vector projections from recent lectures
(see lecture 9), to start making the connections between linear algebra and empirical risk minimization more
clear.

Moving forward, consider the dataset of two points, (2, 1) and (3, 2). We can store the 2D coordinates of our
two points in vectors, x⃗ and y⃗, as follows:

x⃗ =

[
2
1

]
y⃗ =

[
3
2

]
a) Our goal is to find the vector in span(x⃗) that is closest to y. The answer is a vector of the

form wx⃗, where w ∈ R is some scalar. The w that we choose is one that minimizes the length, ∥e⃗∥ of
the error vector, e⃗:

e⃗ = y⃗ − wx⃗

What is w∗, the value w that minimizes ∥e⃗∥? In other words, what value of w minimizes projection
error? (Note that the vector projection of y⃗ onto span(x⃗) is not w∗, but w∗x⃗ — however, here we’re
just asking you for the value of w∗, and of course, to show your work).

b) What is the error vector, e⃗, you found in part (a), and what is its length, ∥e⃗∥?

c) The value of w∗ you found in part (a) should be equal to the value you find using the formula for

m∗. In general, the w∗ that minimizes ∥y⃗−wx⃗∥ is equal to m∗, the m that minimizes
1

n

n∑
i=1

(yi−mxi)
2.

Explain why this is the case.

Hint: ∥y⃗ − wx⃗∥ and
1

n

n∑
i=1

(yi −mxi)
2 are related, but not exactly the same.

In parts (a) through (c), we projected y⃗ onto the span of a single vector, x⃗. But in Lecture 10, we looked at
how to project a vector y⃗ onto the span of two or more vectors. Let’s explore that concept here.

d) Consider the vectors x⃗(1) and x⃗(2), defined as follows:

x⃗(1) =

[
0
3

]
, x⃗(2) =

[
5
23

]

Let y⃗ =

[
7
2

]
.
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https://dsc40a.com/resources/lectures/lec08/lec08-blank.pdf#page=37
https://dsc40a.com/resources/lectures/lec08/lec08-blank.pdf#page=43


What is the vector projection of y⃗ onto span(x⃗(1), x⃗(2)) — that is, what vector in span(x⃗(1), x⃗(2)) is
closest to y⃗? Give your answer in the form of a vector.

e) Let h⃗ be your answer to the previous part. Find scalars w1 and w2 such that:

w1x⃗
(1) + w2x⃗

(2) = h⃗

In Lecture 10 we expressed w1x⃗
(1) + w2x⃗

(2) as the matrix-vector product Xw⃗, where X =

 | |
x⃗(1) x⃗(2)

| |

 =[
0 5
3 23

]
and w =

[
w1

w2

]
. This allowed us to more efficiently solve for the values w1, w2, ..., wd that minimize

projection error when we have several spanning vectors, x⃗(1), x⃗(2), ..., x⃗(d). Moving forward we will use this
approach for multiple linear regression.
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Problem 5. Visualizing Spans and Projections in R3

In this problem, you will use the Desmos 3D Graphing Calculator (https://www.desmos.com/3d) to visualize
how a vector projects onto the span of two other vectors. The exercise will help connect the algebraic
definition of a projection with its geometric meaning.

Consider the following three vectors in R3:

v⃗1 =

12
0

 , v⃗2 =

−1
1
2

 , v⃗3 =

21
3

 .

a) Plot v⃗1 and v⃗2 in the Desmos 3D calculator as arrows from the origin. Label each vector and
include a screenshot of your plot.

b) Plot a picture of span({v⃗1, v⃗2}). Provide a screenshot of your plot, including the original
vectors v⃗1, v⃗2. Hint: It may help to find an equation of the form ax+ by+ cz = 0 for a, b, c ∈ R which
describes the plane when setting up your Desmos plot.

c) Plot the third vector v⃗3 in the same Desmos diagram. Label it clearly and provide a screenshot.

d) Compute and plot the projection of v⃗3 onto the plane span(v⃗1, v⃗2). Plot the projection vector
in Desmos as an arrow segment from the origin. Provide a screenshot.
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https://www.desmos.com/3d


Problem 6. Vector-valued constant model

Suppose we fix a collection of training data {(x⃗i, y⃗i)}ni=1, where x⃗i ∈ Rd are feature vectors and y⃗i ∈ Rd are
vector-valued targets. Consider the constant vector hypothesis that predicts the same vector for every input:

H(x⃗) = h⃗, h⃗ ∈ Rd.

This is a similar setting to the constant model we have encountered throughout the past few weeks, except
that the function is vector valued. In this problem we will identify the vector of parameters h⃗∗ which
minimizes the associated MSE.

Note that this problem will serve as a walkthrough of Section 2.2 in the course notes, so if you get stuck,
you may find that discussion helpful.

a) Using the squared vector length loss (as we did in Homework 2), write the loss for a single

training example (x⃗i, y⃗i) under the constant hypothesis H(x⃗i) = h⃗.

b) Write down the empirical risk function of the vector h⃗ over the dataset of n examples. By
expanding the vector lengths used in Part (a), show that the risk can be expressed as a nested sum

Rsq(h) =
1

n

n∑
i=1

d∑
t=1

(y⃗
(t)
i − h(t))2.

c) Next we will compute the gradient ∇Rsq(h) of the risk function with respect to h⃗. For a

single coordinate direction t ∈ {1, . . . , d}, compute the partial derivative ∂

∂h⃗(t)
R(⃗h).

d) Stack the coordinate-wise derivatives you found in the previous part to obtain ∇Rsq (⃗h) in vector
form. Show that the gradient takes the form

∇Rsq (⃗h) = 2

(
h⃗− 1

n

n∑
i=1

y⃗i

)

e) Solve ∇R(⃗h∗) = 0⃗ for h⃗∗. Write a couple sentences comparing your result to the equivalent
version for the scalar-valued constant model we have explored over the past two weeks.
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https://sawyer-jack-1.github.io/assets/teaching/tfds_book.pdf#page=41




Problem 7. Least Absolute Deviation Regression

In lecture, we explored least squares regression, and defined it as the problem of finding the values of w0

(intercept) and w1 (slope) that minimize mean squared error:

Rsq(w0, w1) =
1

n

n∑
i=1

(yi − (w0 + w1xi))
2.

Notice that we used the squared loss function, (yi − (w0 + w1xi))
2 as our metric for deviation. What if we

used a different loss function instead?

In this problem, we are going to introduce another type of linear regression: least absolute deviation (LAD)
regression. We will define least absolute deviation regression in terms of the absolute loss function rather
than the squared loss function to measure how far away our predictions are from the data. That is, we will
try to instead minimize

Rabs(w0, w1) =
1

n

n∑
i=1

|yi − (w0 + w1xi)|

Since absolute value functions are not differentiable, we cannot just take the gradient of Rabs, set it equal
to zero, and solve for the values of w0 and w1, as we did to minimize Rsq. In order to generate the optimal
LAD regression line we are going to leverage a very useful theorem:

If you have a dataset with n data points in Rk, where k ≤ n, then one of the optimal LAD regression lines
must pass through k data points.

Notice that unlike with least squares regression, the LAD regression line may not be unique!

This theorem is useful to us because it allows us to adopt a very conceptually simple, albeit not very efficient,
strategy to compute an optimal LAD regression line. Since our data will be in R2, we will generate all possible
unique pairs of points and calculate the intercept w0 and slope w1 of the line between each pair. Then we’ll
just select which (w0, w1) pair among these finite options has the smallest value of Rabs(w0, w1). This is
guaranteed by the theorem to be an optimal LAD regression line.

You will need to include screenshots of your code and plots when your submit your Homework 3 to Grade-
scope.

a) If you are given n data points, how many pairs of points are there? Give your answer in terms
of n.

Hint: Try it out on some small values of n and look for a pattern. Note that if you have two data
points (x1, y1) and (x2, y2), this counts as only one pair of points because the line from (x1, y1) and
(x2, y2) is the same as the line from (x2, y2) to (x1, y1).

b) First, we’ll find the intercept and slope of the regular least squares regression line. In the
linked supplementary notebook, read the problem statement and complete the implementation of the
function least squares regression.

c) Next, we’ll find the intercept and slope of the least absolute deviations line. In the
linked supplementary notebook, read the problem statement and complete the implementations of the
functions mean absolute error and find best mad line.

d) Now that we have calculated the least squares regression line and the least absolute deviation
regression line for our data, let’s try plotting them together to see the difference! In the linked
supplementary notebook, generate a scatter plot with the data in black, the least squares line in blue,
and the least absolute deviation line in red. Submit a picture of your plot.
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https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing
https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing
https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing
https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing
https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing
https://drive.google.com/file/d/1otf9qOXkCn_-q5LlGsXXE8rw22VLgrG6/view?usp=sharing


e) Given your knowledge of the loss functions behind least absolute deviation and least squares
regression, provide one advantage and one disadvantage of using LAD over least squares for regression.
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