DSC 40A Fall 2025 - Group Work Week 8
due Monday, Nov 17th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

1 Combinatorics

In probability, when all outcomes in the sample space are equally likely, the probability of an event is
the number of outcomes in the event divided by the number of outcomes in the sample space. Thus, the
probability of the event reduces to two counting (or combinatorics) questions, which ask how many outcomes
are possible. When solving a counting question, it helps to write down one example outcome, then try to
think about how many options we had at each step of generating this example.

There are a few basic combinatorial objects that we’ve studied in this class, namely sequences, permutations,
and combinations. The hard part is often determining which one to use in which situation, which comes
down to two important questions:

e Does the order in which I select the objects matter? In other words, does it count as different or the
same if I choose the same objects in a different order?

e Am I selecting objects with or without replacement? In other words, am I allowed to have repeated
objects?

Sequences:

A sequence is obtained by selecting k elements from a group of n possible elements with replacement, such
that order matters. The number of sequences is

Permutations:

A permutation is obtained by selecting k elements from a group of n possible elements without replacement,
such that order matters. The number of permutations is

P(n,k) = OOk

Combinations:

A combination is obtained by selecting k elements from a group of n possible elements without replacement,
such that order does not matter. The number of combinations is

_(n\ _ P(n,k) n!
Cln, k) = <k> M Rk




Problem 1. Herb Garden

You want to plant an herb garden, so you go to a garden store that has 50 different herbs: 28 are culinary
herbs, 12 are medicinal herbs, and 10 are aromatic herbs. You select 5 herbs for your herb garden by taking
a random sample without replacement from the 50 available herbs.

a) If you consider the herbs you select as a combination (i.e. the order in which you select each herb
does not matter), how many combinations of 5 herbs are possible?

Solution: C(50,5) = (%) = 2,118,760
There are C(50,5) = (550) possible sets of 5 herbs, chosen from 50.

b) If you consider the herbs you select as a combination (i.e. the order in which you select each herb
does not matter), how many combinations of 5 herbs include 2 culinary herbs and 3 aromatic herbs?

Solution: (%) - (%) = 45,360

10

There are (228) ways to pick the culinary herbs and (3

total of
28 10
2 3

c) If you consider the herbs you select as a permutation (i.e. the order in which you select each herb
matters), how many permutations of 5 herbs are possible?

) ways to pick the aromatic herbs, for a

Solution: P(50,5) = 254,251,200
There are P(50,5) = 50 - 49 - 48 - 47 - 46 possible sequences of 5 distinct herbs from 50 options.

d) If you consider the herbs you select as a permutation (i.e. the order in which you select each herb
matters), how many permutations of 5 herbs include 2 culinary herbs and 3 aromatic herbs?

Solution: (%) () 5! =28-27-10-9-8- (3) = 5,443,200

There are (228) ways of picking two culinary herbs and (130) ways of picking three aromatic herbs,

and so there are
28 10
2 3

ways of picking 2 culinary herbs and three aromatic herbs (this is the answer to part (d)). But
the order matters. For each combination of 5 herbs, there are 5! different orderings. The total

number of sequences is therefore
28 10 5l
2 3 '

Here is another approach. We have to fill a sequence of 5 slots. To generate a sequence, we’ll
first pick the order in which the culinary herbs will appear. We’ll then pick the order in which
the aromatic herbs will appear. Then we will pick where the aromatic herbs will be placed in the
order of five herbs.

There are 28 - 27 ways in which to order 2 culinary herbs.

There are 10 -9 - 8 ways in which to order 3 aromatic herbs.




There are (g) ways of picking where to place the aromatic herbs in the final sequence.
The total number of sequences is

28-27-10-9-8- (Z)

You can verify that this gives the same answer as above.

e) What is the probability that you choose 2 culinary herbs and 3 aromatic herbs for your garden?

(228) . (130) _ (228) . (130) . 5! _ 162
(%) P(50,5) 7567

~ 0.021

Solution:

We can solve this probability question using a sample space of permutations or combinations. To
use combinations, divide the answer to part (b) by the answer to part (a):

28Y . (10
G)G) 162 o,

() 7567

To use permutations, divide the answer to part (d) by the answer to part (c):

(228) i (130) 5! _ 162
P(50,5) 7567

~ 0.021

Problem 2. Shuffling Strings
a) How many different strings can be created by shuffling the letters of DOG?

Solution: There are 3 options for the first character, 2 for the second, and 1 for the third. This
gives 3! = 6.

b) How many different strings can be created by shuffling the letters of GAG?

Hint: The answer is not 6.

Solution: If you enumerate all of the possibilities, you’ll see there are only 3 permutations of
GAG: AGG, GAG, and GGA.

It’s tempting to jump to the formula for permutations, which would imply that there are 3! = 6
permutations of GAG. However, this double counts each permutation. Specifically, each unique
permutation is counted once for every arrangement of the two Gs.

To see this concretely, suppose that instead our string is Gy AG>. Then, there are 6 unique
permutations:

G1AG, G2 AG AG1Gy AG>Gy G1GoA G2G1A

However, if G; and G are both just treated as being Gs, then the first two permutations are
the same, the second two permutations are the same, and the last two permutations are the
same. So, we need to divide our result from using the permutation formula, 3!, by the number
of arrangements of the repeated characters. In this case there are 2 repeated characters, so there

are 2! ways to arrange them. Thus, the total number of permutations of GAG is %: =3.




Another way to think about this problem is that we have 3 characters and need to choose 2 of
them to be Gs; we can do this in (;) ways.

¢) How many different strings can be created by shuffling the letters of GAAAGGGG?

Hint: How can you use combinations?

Solution:
The easiest way to think about this problem is using combinations.

There are 8 positions for characters to be placed in any given string, and we want to choose 3
of them to be A. This can be done in (g) = 56 ways. Equivalently, we could choose 5 of the

positions to be G. This can be done in (g) = 56 ways, as well.

d) How many different strings can be created by shuffling the letters of AGGRAVATE?

Solution: AGGRAVATE has:
e 3 As,
e 2 Gs,
e 1R,
e 1V,
e 1T, and
e 1 E.

One way to think about this problem is to start with 9!, which would be the total number of ways
to rearrange the letters of AGGRAVATE if all letters were unique. Then, we need to account
for the fact that there are repeated As and Gs, meaning that we overcounted. There are 3! ways
to arrange the As in place and 2! ways to arrange the As in place, meaning that each unique
permutation of AGGRAVATE was counted 3! - 2! times instead of once.

Therefore, the actual number of permutations of AGGRAVATE is

9!

Another approach uses combinations. Of the 9 positions, we need to select 3 of them to be filled
with As. Then of the remaining positions, we need to select 2 of them to be filled with Gs. Then
we need to select one of the remaining positions to contain the R, and so on, yielding

(-0 ()-()- (- ()- o

Problem 3. Xs and Os

Let N(a,b) represent the number of strings you can create out of a Xs and b Os. Explain why N(a,b)
satisfies each of the following:

N(0,b) =1 (1)
N(a,0)=1 (2)
N(a,b) =N(a—1,b) 4+ N(a,b—1) for a>0and b> 0. (3)




Solution: (1) If we have no Xs and b Os, then we can create just one string (with all Os).
(2) If we have no Os and a Xs, then we can create just one string (with all Xs).

(3) Every string that we create must start with an X or O. Notice that these cases are disjoint, as a
string can start with only one letter. If a string with a Xs and b Os starts with an X, then the rest of
the string has a — 1 Xs and b Os. So the number of such strings is N(a — 1,b). Similarly, rf a string
with a Xs and b Os starts with an O, then the rest of the string has a Xs and b — 1 Os. So the number
of such strings is N(a,b— 1). Since these two disjoint cases (starting with an X or starting with an O)
cover all possibilities, we have N(a,b) = N(a —1,b) + N(a,b —1).

Problem 4. Tiebreaker

To break a tie among a group of n > 3 people, you come up with the following tiebreaker: Everyone flips a
coin. If one person’s coin is different from all the others, that person wins, and the tie is broken! Otherwise,

repeat the process.

a) What is the probability that the tie is broken after the first coin toss?

Solution: an_l .

We can think of an outcome as a sequence of heads and tails, corresponding to each person’s flip.
Each coin toss sequence of length n is equally likely, and there are 2™ possible coin toss sequences.
The number of coin toss sequences with exactly one head is n, since there are n possibilities for
where to place the one head. Similarly, the number of coin toss sequences with exactly one tail
is n. So the total number of coin toss sequences where one person is different from all the others
is n + n = 2n. Therefore the probability of the tie being broken after the first coin toss is

2n n

P

b) Fix an integer k > 1. Find the probability that the tie is broken after exactly k coin tosses?

k—1
Solution: (1 — 2:*1) * 27:;.

If the tie is broken after exactly k coin tosses, that means the first £ — 1 coin tosses did not have
a winner, and the kth coin toss did. The probability of a single toss breaking the tie was found
in part (a), so the probability of the kth toss breaking the tie is

n \k-1 n
(1 - 2n71) *on-1-




2 Independence and Conditional Independence

Recall that two events A, B are independent if knowledge of one event occurring does not affect the
probability of the other event occurring. There are three equivalent definitions of independence:

P(A[B) = P(A) (4)
P(B|A) =P(B) (5)
P(AN B) = P(A) x P(B) (6)

Two events that are not independent are also called dependent.
Two events A and B are conditionally independent given C if
P((AN B)|C) =P(A|C) x P(B|C).

Notice the similarity between this definition and the third definition of independence given above. Condi-
tional independence given C' means that when C' occurs, A and B are independent in that case. But they
may or may not be independent in general.

Problem 5.

Let A and B be events in a sample space with 0 < P(A) < 1 and 0 < P(B) < 1. If A is a subset of B, can
A and B be independent? If yes, give an example, otherwise prove why not.

Solution: No, it is not possible for A and B to be independent.

If A is a subset of B, then P(B|A) = 1, but P(B) < 1, so P(B|A) # P(B), which means A and B are not
independent. If one event is a subset of the other, then the events are not independent, which makes
sense because knowledge of one event tells you something about the chance of the other event occurring.

Problem 6.

Consider two flips of a fair coin. The sample space is S = all outcomes of 2 flips of a coin = {HH, HT,
TH,TT}, where each has equal probability %. We define the event A as A = first flip is heads = {HH, HT'},
and the event B as B = second flip is heads = {HH,TH}. You can verify that A and B are independent
by showing P(AN B) = P(A) x P(B).

Now, suppose that the coin is not fair, and instead flips heads the first time with probability p and flips
heads the second time with probability q.

Are A and B still independent?

Solution: Let’s compute P(A4), P(B), and P(A N B) and see if P(AN B) = P(A)P(B).
First, (AN B) =P(HH) = pq.

Then,
P(A) =P(HH)+P(HT) = pq+p(1 —q) =pqg+p — pq = p,

and
P(B)=P(HH)+P(TH) =pq+ (1 —p)g=pg+q—pqg=q.

This establishes that P(A)P(B) = pg = P(AN B), so A and B are still independent.

Problem 7.

A box contains two coins: a regular coin and one fake two-headed coin (P(H) = 1). Choose a coin at random
and flip it twice. Define the following events.



e A: First flip is heads (H).
e B: Second flip is heads (H).
e C: Coin 1 (regular) has been selected.
Are A and B independent? Are A and B conditionally independent given C'?

Prove your answers using the definitions of independence and conditional independence. Also explain your
answers intuitively.

Solution: Firstly, we know that P(A|C) = P(B|C) = 1/2 since a fair coin has equal probability of
heads and tails. Also, given that Coin 1 is picked, we have P((A N B)|C) = (1/2)(1/2) = 1/4 (the
probability of getting two heads in two tosses of a fair coin). Therefore, P((ANB)|C) = P(A|C)P(B|C).
This shows that A and B are conditionally independent given C.

Now, we will show that P(A N B) # P(A)P(B).
To find P(A),P(B) and P(A N B), we use the law of total probability:

P(A) = P(A|C)P(C) + P(A|C)P(C)

=(1/2) « (1/2) + 1% (1/2)
P(A) =3/4
Similarly,
P(B) = P(B|C)P(C) + P(B|C)P(C)
=(1/2) « (1/2) + 1% (1/2)
P(B) =3/4
Finally,

P(AN B) =P((AN B)|C)P(C) + P((AN B)|C)P(C)
= (1/4) % (1/2) + (1) % (1/2) since a two-headed coin means the first two flips are heads
P(ANB) =5/8.

Since P(AN B) = 5/8 # P(A)P(B) = 9/16, A and B are not independent. We can also justify
this intuitively. For example, if we know that A has occurred (i.e., the first coin toss has resulted in
heads), we would think that there is a higher chance of having chosen Coin 2 than Coin 1. This in turn
increases the conditional probability of B occurring (in other words, P(B|A) > P(B)), which suggests
that A and B are not independent. On the other hand, A and B are independent given C, because for
a fair coin, the outcome of the second toss is not influenced by the result of the first toss. Generally
speaking, conditional independence neither implies (nor is it implied by) independence.
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