
DSC 40A Fall 2025 - Group Work Session 5
due Monday, October 27th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

1 Multiple Regression

Suppose we wish to build a model that predicts the ripeness (on a scale of 1 to 5) of a mango in terms of
three variables that we can easily observe: the softness, color, and size (also on a scale of 1 through 5). To
do this, we go to the grocery store and carefully grade n mangoes (for example, one was softness “1”, color
“4”, size “3”, and when we cut into it, a ripeness of “2.5”).

In this problem we will create a model to predict the ripeness score using multiple linear regression.

Problem 1.

Going back to the very beginning: review your notes and clearly write out the three steps to the modeling
recipe.

Problem 2.

In this problem we will carefully set up each ingredient of the modeling recipe.

a) Suppose we wish to use a linear model to make predictions. Explicitly write out the hypothesis
function H(x⃗), where

x⃗ =

x(1)

x(2)

x(3)

 ,

with x(1), representing softness, x(2) representing color, and x(3) representing size. What are the
parameters of the hypothesis function?

Solution:
H(x⃗) = w0 + w1x

(1) + w2x
(2) + w3x

(3)

Parameters: w0 (intercept), w1 for softness, w2 for color, and w3 for ripeness.

b) Suppose we have n ≥ 1 mangoes in our observed dataset, with features (x⃗1, x⃗2, . . . , x⃗n). Using mean
squared error, write down the empirical risk function Rsq between the hypothesis function above
and the observed ripeness values (y1, y2, . . . , yn). (Do not use the design matrix yet, simply write the
empirical risk directly in terms of the data and parameters.)
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Solution:

Rsq(w⃗) =
1

n

n∑
i=1

(yi − (w0 + w1x
(1)
i + w2x

(2)
i + w3x

(3)
i ))2.

c) Let X be the design matrix for the n mangoes we analyzed and let y⃗ be the vector of ripeness values
for these mangoes. Using your answer from the previous part and some linear algebra, show that

Rsq(w⃗) =
1

n
∥y −Xw⃗∥2.

(You already saw this formula once or twice in lecture, but you should re-produce those calculations
here for practice.)

Solution:

y −Xw⃗ =

y1...
yn

−


x
(1)
1 w1 + x

(2)
1 w2 + x

(3)
1 w3

...

x
(1)
n w1 + x

(2)
n w2 + x

(3)
n w3

 =


y1 − (x

(1)
1 w1 + x

(2)
1 w2 + x

(3)
1 w3)

...

yn − (x
(1)
n w1 + x

(2)
n w2 + x

(3)
n w3)


The length of this vector is√

(y1 − (x
(1)
1 w1 + x

(2)
1 w2 + x

(3)
1 w3))2 + ...+ (yn − (x

(1)
n w1 + x

(2)
n w2 + x

(3)
n w3))2

=

√√√√ n∑
i=1

(yi − (w0 + w1x
(1)
i + w2x

(2)
i + w3x

(3)
i ))2.

Rsq(w⃗) =
1

n

n∑
i=1

(yi − (w0 + w1x
(1)
i + w2x

(2)
i + w3x

(3)
i ))2

=
1

n

√√√√ n∑
i=1

(yi − (w0 + w1x
(1)
i + w2x

(2)
i + w3x

(3)
i ))2

2

=
1

n
∥y −Xw⃗∥2.

d) Review your notes and find a way to express the optimal parameter w⃗∗ in terms of X and y⃗. You do
not need to re-produce all of the calculations from lecture here, but you are expected to be comfortable
with them.

Solution:
w⃗∗ = (XTX)−1XT y⃗

Problem 3.

The next few parts require direct calculations with the dataset below.

Softness Color Size Ripeness

3 4 3 2.5
1 2 2 2
4 5 2.5 5
3 3.5 3.5 4.5
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a) Write down the feature vectors x⃗1, x⃗2, and x⃗3, x⃗4 for the mangoes in the data set, in addition to the
label vector y⃗.

Solution:

x⃗1 =

34
3

 x⃗2 =

12
2

 x⃗3 =

 4
5
2.5

 x⃗4 =

 3
3.5
3.5



b) Write down the design matrix, X.

Solution:

X =


1 3 4 3
1 1 2 2
1 4 5 2.5
1 3 3.5 3.5



c) Calculate using a calculator like Wolfram Alpha the matrix XTX and the vector XT y⃗.

Solution:

XTX =


4 11 29

2 11
11 35 89

2
63
2

29
2

89
2

229
4

163
4

11 63
2

163
4

63
2



XT y⃗ =


14
43
219
4

159
4



d) Finally, use a calculator like Wolfram Alpha to find (XTX)−1. Use your answers in the previous part
to write the optimal hypothesis function H∗(x⃗).

Solution:

(XTX)−1 =


455
8

255
8

−119
4

−53
4

255
8

163
8

−75
4

−29
4−119

4
−75
4

35
2

13
2−53

4
−29
4

13
2

7
2



w⃗∗ =


455
8

255
8

−119
4

−53
4

255
8

163
8

−75
4

−29
4−119

4
−75
4

35
2

13
2−53

4
−29
4

13
2

7
2



14
43
219
4

159
4

 =


14081

8
10695

2
27483

4
79867
16



e) Notice that |w3| is significantly smaller than |w1|. How can you interpret this observation in the
context of the data? What might this tell you about predicting the ripeness of mangoes?

Solution: wi is the coefficient of feature in coordinate i for i = 1, 2, 3 (i = 0 corresponds to the
intercept). That is, w1 is the coefficient of the softness feature and w3 is the coefficient of the
size feature. The observation that |w3| < |w1| suggests that softness is more important than
size when building a model to predict ripeness.
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f) [OPTIONAL - PYTHON] In a Jupyter notebook, use your model H∗(x⃗) to find the predictions
for each of the mangoes in the dataset, and compute the mean squared error.

Solution:

import numpy as np

X = np.array([ [1, 3, 4, 3], [1, 1, 2, 2], [1, 4, 5, 2.5], [1, 3, 3.5, 3.5] ])

y = np.array([2.5, 2, 5, 4.5])[:, None]

w star = (np.linalg.inv(X.T @ X) @ X.T) @ y

pred = X @ w star

print(pred)

print(f’MSE np.linalg.norm(y - pred)**2 / 4:>1.4f’)

Output: [[2.5] [2. ] [5. ] [4.5]]

MSE 0.0000

4



2 More on gradients

This problem is a continuation of the last groupwork, and is intended to provide more practice for gradient
calculations.

Problem 4.

Each expression on the left is a scalar function of a vector x⃗ ∈ Rn, and each expression on the right is a
vector field in terms of x⃗ ∈ Rn. Draw a line between each function on the left and its gradient on the right.
Assume a⃗ ∈ Rn is a fixed vector and A ∈ Rn×n is a fixed matrix. Not all gradients on the right will have a
match, and some will have more than one.

(A + AT )x⃗

a⃗T x⃗ Ax⃗

|⃗aTx|2 2a⃗a⃗T x⃗

∥x⃗∥2 2ATAx⃗

∥Ax⃗∥2 2x⃗

x⃗TAx⃗ 1
2
a⃗T a⃗x⃗

Tr(x⃗x⃗T ) x⃗Tx

a⃗

As a reminder, Tr is the matrix trace, or the sum of the diagonal elements in a matrix.

Solution:
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a⃗T x⃗ =

n∑
i=1

aixi =⇒ ∇a⃗T x⃗ = ⟨a1, . . . , an⟩ = a⃗ (1)

|⃗aT x⃗|2 =

(
n∑

i=1

aixi

)2

=⇒ ∂⃗|aT x⃗|2

∂xi
= 2a⃗T x⃗ai =⇒ ∇⃗|aT x⃗|2 = 2a⃗a⃗T x⃗ (2)

(3)

Note that the third option ∥x⃗∥2 and the sixth option Tr(x⃗x⃗T ) are actually the same function, which
you encountered in the previous groupwork. Both of their gradients are 2x⃗.

∥Ax⃗∥2 = (Ax⃗)T (Ax⃗) (4)

= x⃗T (ATA)x⃗ (5)

=

n∑
i=1

n∑
j=1

x⃗(i)(ATA)i,j x⃗
(j) (6)

= x⃗(1)(ATA)1,1x⃗
(1) + x⃗(1)(ATA)1,2x⃗

(2) + . . .+ x⃗(1)(ATA)1,nx⃗
(n) (7)

+ x⃗(2)(ATA)2,1x⃗
(1) + x⃗(2)(ATA)2,2x⃗

(2) + . . .+ x⃗(2)(ATA)2,nx⃗
(n) (8)

+ . . . (9)

+ x⃗(n)(ATA)n,1x⃗
(1) + x⃗(n)(ATA)n,2x⃗

(2) + . . .+ x⃗(n)(ATA)n,nx⃗
(n). (10)

Therefore, if i is fixed, we can scan the long expression above and find all of the terms that involve x⃗(i),
finding

∂∥Ax⃗∥2

∂x(i)
=

n∑
j=1

(ATA)i,jx
(j) + (ATA)j,ix

(j) (11)

(12)

but ATA is symmetric ((ATA)T = ATA), so this means (ATA)i,jx
(j) + (ATA)j,ix

(j) = 2(ATA)i,jx
(j).

Therefore,

∂∥Ax⃗∥2

∂x(i)
= 2

n∑
j=1

(ATA)i,jx
(j) (13)

(14)

which is the same as matrix multiplication. So ∇∥Ax∥2 = 2ATAx⃗.

For the fifth term x⃗TAx⃗, note that a very similar argument applies:

x⃗TAx⃗ =

n∑
i=1

n∑
j=1

x⃗(i)Aij x⃗
(j) (15)

= x⃗(1)A1,1x⃗
(1) + x⃗(1)A1,2x⃗

(2) + . . .+ x⃗(1)A1,nx⃗
(n) (16)

+ x⃗(2)A2,1x⃗
(1) + x⃗(2)A2,2x⃗

(2) + . . .+ x⃗(2)A2,nx⃗
(n) (17)

+ . . . (18)

+ x⃗(n)An,1x⃗
(1) + x⃗(n)An,2x⃗

(2) + . . .+ x⃗(n)An,nx⃗
(n). (19)
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Therefore, if i is fixed, we can scan the long expression above and find all of the terms that involve x⃗(i),
finding

∂∥Ax⃗∥2

∂x(i)
=

n∑
j=1

Ai,jx
(j) +Aj,ix

(j) (20)

(21)

Note that AT
i,j = Aj,i be definition. So

∂∥Ax⃗∥2

∂x(i)
=

n∑
j=1

(A+AT )i,jx
(j) (22)

= 2

n∑
j=1

(A+AT )i,jx
(j) (23)

(24)

Therefore ∇x⃗TAx⃗ = (A+AT )x⃗.
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