
DSC 40A Fall 2025 - Group Work Session 4
due Monday, October 20th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

Note(!!): this groupwork is slightly longer. You should plan on completing problems 1 through 5 in about
50 minutes. After working on the worksheet for 50 minutes, submit what you have completed.

1 Gradient of Scalar-valued Functions

As we start dabbling in multiple linear regression and linear algebra, we will start to work with vector-valued
functions. One example of a vector-valued function we have seen in this class is the empirical risk for linear
regression.

Rsq(w⃗) = Rsq

([
w0

w1

])
=

1

n

n∑
i=1

(yi − (w0 + w1xi))
2

Recall that to solve for the optimal model parameters, w∗
0 and w∗

1 , we found the partial derivatives of the
empirical risk with respect to each parameter individually. Observe that these make up the components of
the gradient of the empirical risk function:

∇Rsq(w⃗) =

[
∂Rsq

∂w0
∂Rsq

∂w1

]

In essence, the gradient of a vector-valued function is a vector of the function’s partial derivatives
with respect to each component of the vector. Notice that this means the dimensions of the function’s
domain should match the dimensions of the gradient. With regards to the above empirical risk example, Rsq

takes in a vector of length 2, namely

[
w0

w1

]
, so its gradient is also a vector with 2 components. Keep this in

mind when solving for gradients.

Problem 1.

Suppose f : R3 → R is the function:

f(x⃗) = 3x2
1 + 2x1x2 − x1 cos(x3)

What is the gradient of f? Hint: Start by finding the partial derivatives of f with respect to each of x1, x2,
and x3.
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Solution:

∇f(x⃗) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 =

6x1 + 2x2 − cos(x3)
2x1

x1 sin(x3)



Problem 2.

Suppose a⃗ ∈ R3, and suppose f : R3 → R is the function:

f(x⃗) = a⃗T x⃗ = a1x1 + a2x2 + a3x3

What is the gradient of f? Hint: Again, start by finding the partial derivatives of f with respect to each of
x1, x2, and x3.

Solution:

∇f(x⃗) =


∂f
∂x1
∂f
∂x2
∂f
∂x3

 =

a1a2
a3

 = a⃗

Problem 3.

Perhaps you have begun to notice that some derivative tricks you learned in single variable calculus also
apply with vector calculus. We will make some connections to rules you saw in single variable calculus, like
the product rule, in this problem.

a) Suppose f : Rn → R is the function:

f(x⃗) = x2
1 + x2

2 + ...+ x2
n

What is the gradient of f?

Solution:

∇f(x⃗) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn

 =


2x1

2x2

...
2xn

 = 2


x1

x2

...
xn

 = 2x⃗

b) Suppose f : Rn → R is the function:

f(x⃗) = x⃗T x⃗

Using the result from Problem 3 and the product rule for single variable functions, what is the gradient
of f? Hint: Recall the product rule for single variable functions, d

dxf(x)g(x) = f ′(x)g(x) + f(x)g′(x).

Solution:
∇f(x⃗) = x⃗+ x⃗ = 2x⃗

c) Suppose f : Rn → R is the function:

2



f(x⃗) = ∥x⃗∥2

What is the gradient of f?

Solution:
∇f(x⃗) = 2x⃗

Note that all three functions f above are really the same function!
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2 Fun with Geometry - Draw a picture

The purpose of this problem is to help build (or re-build) our skills and intuition for the rich connections
between geometry and linear algebra.

x

y

y = 2x− 1

P = (−1, 1)

Q = (−0.5,−2)

Problem 4.

In this problem we will use the drawing above and some linear algebra to find the distance between the point
P (−1, 1) and the red line y = 2x+ 1.

a) A useful fact that might be familiar is that all lines in the (x, y)-plane can be written in the form

L =
{
x = (x, y) : xTn = c

}
for some vector n called the normal vector and a scalar c ∈ R called the offset. Using the equation
y = 2x + 1 that defines the red line, manipulate the equation to show that n = (−2, 1) is a normal
vector for the line. Then, find the offset c.

Solution: y = 2x+1 is equivalent to −2x+ y = 1, or xT (−2, 1) = 1. Therefore n = (−2, 1) and
c = 1.

b) In the picture above, draw the following three vectors originating from point Q (!!):

1. The vector a =
−−→
QP ,

2. The normal vector n from part (a).

3. The orthogonal projection p = projna. You will need to calculate it first.
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Solution:

x

y

y = 2x− 1

P = (−1, 1)

Q = (−0.5,−2)

a

n

projna

To find p, start by writing a = P −Q = (−0.5, 3). Then

p =
nTa

nTn
n (1)

=
1 + 3

4 + 1
(−2, 1) = (−1.6, 0.8) (2)

c) Using all of these ingredients, find the distance between P and the red line. HINT: Draw a right
triangle in the picture with vertices P,Q, and the endpoint of the projection vector p.

Solution: Based on the hint, we have the picture below. Notice that the triangle T described in

the hint is congruent to a triangle T ′ reflected across the vector
−−→
QP .
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x

y

y = 2x− 1

P

Q

a

p
T

T ′

Therefore, the distance between P and the line is given by the length of the side of the triangle
T on the bottom left, which is ∥p∥. We therefore have

Distance = ∥p∥ =
√
1.62 + 0.82 ≈ 1.788.
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3 Support Vector Machine v0.0.1

The Linear Support Vector Machine is a popular machine learning model. But how does it work? One’s
journey in becoming a successful data scientist is full of questions like these.

In the next two problems we will build a simplified version of the support vector machine model on a toy
dataset. We will use some tools and skills that we explored in Section 1 - please make sure you have
thoroughly explored it.

x

y

w

Problem 5.

In the illustration above we have rendered a vector w = (1, 3).

a) Consider the set Z = {x ∈ R2 : xTw = 0}. Show that Z is a vector subspace of R2 and then draw it
in the picture above.

Solution: xTw = 0 implies that x1w1 + x2w2 = 0. In this case, x1 + 3x2 = 0. To show that Z
is a vector subspace of R2, we need to show:
1. Contains the zero vector.

Substitute the zero vector

(
0
0

)
into the equation we get 0 + 3(0) = 0.

2. Closed under addition.

Let x⃗ =

(
x1

x2

)
and y⃗ =

(
y1
y2

)
∈ Z.This implies x1 + 3x2 = 0 and y1 + 3y2 = 0, and

x⃗+ y⃗ =

(
x1 + y1
x2 + y2

)
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x1 + y1 + 3(x2 + y2) = (x1 + 3x2) + (y1 + 3y2) = 0 + 0 = 0.

3. Closed under scalar multiplication.

Let x⃗ =

(
x1

x2

)
and let λ ∈ R.

λx⃗ =

(
λx1

λx2

)
λx1 + λx2 = λx1 + λ · 3x2 = λ(x1 + 3x2) = λ · 0 = 0.

x

y

w
Z

b) Now let a scalar c ∈ R be fixed. Let Zc = {x ∈ R2 : xTw = c}. Is Zc a subspace? Why or why not?
Draw Zc in your picture for c = −5,−3,−1, 1, 3, 5. Note: You have already drawn Z0 in the previous
part. Once you get the idea of how these lines are situated you can sketch your informed guesses - no
need to be 100% exact here.

Solution: Zc is a subspace only if c = 0. The given information implies x1 + 3x2 = c.
1. Plug in the zero vector we get 0 + 3(0) = c. We will only get the zero vector if c = 0.
2. To have this space closed under addition, we need to have that

(x1 + y1) + 3(x2 + y2) = (x1 + 3x2) + (y1 + 3y2) = c+ c = 2c = 0

Again showing c = 0 needs to be satisfied.

3. Let x =

(
x1

x2

)
∈ Zc, meaning x1 + 3x2 = c. Let λ ∈ R. We need it so that λ(x1 + 3x2) = 0.

The only way this can be guaranteed is when c = 0.
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x

y

w
Z0

Z−5

Z−3

Z−1

Z5

Z3

Z1

c) As a final ingredient, let Zp = {x ∈ R2 : xTw > 0} and let Zn = {x ∈ R2 : xTw < 0}. What do these
regions look like? Shade them in the picture.

Solution:

9



Zp

Zn

x

y

w
Z0

Z−5

Z−3

Z−1

Z5

Z3

Z1

Problem 6.

In this problem we will introduce the Simplified Linear SVM (SLSVM) and build one based on an example
dataset. Linear support vector machines are often used for binary classification tasks, which are situations
where your data falls into one of two classes and in which you wish to design a model to predict the class
of incoming data. Some examples: identifying whether an image contains a cat or a dog, whether a leaf is
healthy or diseased, and so on.

Assume that your dataset is of the form (x(i), y(i)) where each x(i) ∈ R2 and each y(i) ∈ {+1,−1} (+1 and
-1 correspond to the class labels).

a) Consider the hypothesis function H(x(i)) = wTx. What are the parameters of this model? Then,
using your intuition from the previous problem, describe geometrically how the hypothesis H is
attempting to classify your data.

Solution: The parameters are w = (w1, w2). Based on the previous problem, the model is
separating the plane into two regions based on either side of the line wTx = 0. Then making a
class prediction based on which side of this line your input data falls.

b) For the dataset (x(i), y(i)), write the empirical loss functions Rabs and Rsq for the absolute and square
losses, respectively.

Solution:

Rabs =
1

n

n∑
i=1

∣∣∣y(i) −H(x∗)
∣∣∣
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Rsq =
1

n

n∑
i=1

(
y(i) −H(x∗)

)2

c) Observe that the gradient gradient ∇wRsq is given by the formula

∇wRsq =

〈
∂

∂w1
Rsq(x

(i), y(i)),
∂

∂w2
Rsq(x

(i), y(i))

〉
(3)

=

〈
2

n

n∑
i=1

y(i)x
(i)
1 −wT

(
2

n

n∑
i=1

x
(i)
1 x(i)

)
,
2

n

n∑
i=1

y(i)x
(i)
2 −wT

(
2

n

n∑
i=1

x
(i)
2 x(i)

)〉
(4)

You do not need to prove this during discussion! We recommend trying to prove this
formula on your own time. Although it looks pretty terrifying, observe that it is actually a simple

structure if we hide some of the notation (this is a theme in mathematics). Let α1 = 2
n

∑n
i=1 y

(i)x
(i)
1

and α2 = 2
n

∑n
i=1 y

(i)x
(i)
2 . Then, let a1 = 2

n

∑n
i=1 x

(i)
1 x(i) and a2 = 2

n

∑n
i=1 x

(i)
2 x(i). Then we have

∇wRsq =
〈
α1 −wTa1, α2 −wTa2

〉
= 0. (5)

Thoroughly investigate these and convince yourself that α1, α2 are actually scalars and a1,a2 are
actually vectors.

Then, show that any vector w∗ which satisfies ∇Rsq(w
∗) = 0 must satisfy the following equation:

[
aT1
aT2

] [
w1

w2

]
=

[
α1

α2

]
(6)

Solution: Starting with the gradient equation, we have

∇wRsq =
〈
α1 −wTa1, α2 −wTa2

〉
= 0 (7){

α1 −wTa1 = 0

α2 −wTa2 = 0
(8)

Therefore we must have wTa1 = α1 and α2 −wTa2 = α2. This is the same as writing[
aT1
aT2

] [
w1

w2

]
=

[
α1

α2

]
(9)

d) Now consider the following example. Robert is a biologist at UC Irvine and studies minnows. Some
of the fish in his lab are infected with a disease Infectus Horriblus, and some are healthy. For four
fish, he records their length in cm and their weight in g and records them in the table below. He then
observes whether they are infected or healthy.

Length (cm) Weight (g) Diseased

1.0 2 Healthy
1.1 1.85 Healthy
1.75 0.9 Diseased
2.9 1.1 Diseased

Using part (d), find α1, α2,a1,a2 and write down the linear equation for the optimal SLSVM for this
dataset. You will need to use a calculator. (Let yi = 1 if the minnow is healthy and yi = −1 if it is
diseased.)
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Solution: Let yi = 1 if the minnow is healthy and yi = −1 if it is diseased. Then we calculate:

α1 =
2

n

n∑
i=1

y(i)x
(i)
1 (10)

=
2

4
((1)(1.0) + (1)(1.1) + (−1)(1.75) + (−1)(2.9)) = −1.275 (11)

α2 =
2

n

n∑
i=1

y(i)x
(i)
2 (12)

=
2

4
((1)(2.0) + (1)(1.85) + (−1)(0.9) + (−1)(1.1)) = 0.925 (13)

a1 =
2

n

n∑
i=1

x
(i)
1 x(i) (14)

=
2

4
(1.0(1, 2) + 1.1(1.1, 1.85) + 1.75(1.75, 0.9) + 2.9(2.9, 1.1)) = (6.84125, 4.4) (15)

a2 =
2

n

n∑
i=1

x
(i)
2 x(i) (16)

=
2

4
(2.0(1, 2) + 1.85(1.1, 1.85) + 0.9(1.75, 0.9) + 1.1(2.9, 1.1)) = (4.4, 4.72125) (17)

(18)

Therefore the linear system is given by[
6.84125 4.4
4.4 4.72125

] [
w1

w2

]
=

[
−1.275
0.925

]
(19)

e) Use an online calculator to solve this sytem and show that

w∗ ≈
[
−0.78
0.92

]
(20)

On Desmos, plot your original data and the line {xTw∗ = 0}, which is called the decision boundary.

Solution:
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