DSC 40A Fall 2024 - Group Work Session 2
due Monday, October 6th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

1 Summation Notation

You can often verify for yourself if something is true about summation notation by “expanding” the sum-
mation symbol and seeing if the property holds. For instance, suppose we want to see if it is true that
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We start by “expanding” Z c-x;
i=1

n
E c-Tr; =cx1+cro+cr3+...+cxr,

=1

Now we see that the ¢ can be factored out:
=clx1+xo+a3+...+24)
n
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This is a simple proof that the property is true. On the other hand, we can prove that a property doesn’t
hold in the same way: by expanding both sides and showing that they are not equal.

Problem 1.
n n n
Show that Z(aﬁl +yi) = (Z xi) + (Z y’) :
i=1 i=1 =1



Solution:

Z(xﬂryz-)=(xl+y1)+(:v2+y2)+---+(:cn+yn)

=(@1+z2+...2)+ W1 +y2+-..Yn)

() (350)

Problem 2.
n

Find a simple expression for Z ¢ not involving summation notation. Show that your expression is correct.
i=1

Solution: The simple expression is ¢ * n, as shown by expanding the sum:

n

Zc:c+c+-~~+c
i=1
= C*n.




2 Chaining Inequalities

Suppose we have collected a bunch of numbers, y1,...,y,. Let’s assume, too, that these numbers are in
sorted order, so that y; <y < ... < y,.

The midpoint of yi,...,y, is the average of the smallest and largest number:
midpoint = h Jern

Intuitively, the midpoint is at most y,, and is at least y;; it lies somewhere in the middle of these two numbers.
We can easily prove this with a chain of inequalities.

First, we show that the midpoint is at most y,,. We start with the definition:

Y1 + Yn

midpoint =
P 2

We can do anything to the right hand side that makes it bigger, keeping in mind that we’re trying to get it
to look like y,,. Right now there is y; hanging out; can we simply change it to a y,? Yes! Remember that
Yn > Y1, so this would make the right hand side bigger. Therefore, we have to write <:

Yn + Yn

<
- 2
We can simplify this:

2Yn
2

Notice that we wrote = on the last line, not <. This is because the line is indeed equal to the one before it.
= UYn

We have made a chain of inequalities and equalities; this one looks like =, <, =, =. Since < is the “weakest
link” in the chain, the strongest statement we can make is that the midpoint is < y,,, but this is what we
wanted to say.

Problem 3.
Prove that the midpoint is > y;.

Solution:
Y1 < Yn
Y1 +y1 <Yn+
% < Yn + Y1
2 = 2
y1 < midpoint
Problem 4.
Suppose y1, ...,y are all positive numbers. The geometric mean of y1,...,y, is defined to be:
(y1-y2- "yn)l/n-

Prove that the geometric mean is less than or equal to y, and greater than or equal to y; using a chain of
inequalities.



Solution: Assuming the numbers are ordered, let’s first show that the geometric mean > y;. We know
that the below inequalities hold by definition .

Since y; > 0 Vi, we can multiply the n inequalities to get

Yiyr---y1 S Yiy2 - Yn
So,

YT < Y1y2---Yn

(y?)l/n < (112 '-yn)l/n
y1 < geometric mean

You can similarly show that geometric mean < y, by using the fact that y; <y, fori =1,2,...n.




3 Minimizers and Maximizers

We've seen that machine learning problems must first be formulated as mathematical problems. Many of
these mathematical problems turn out to be optimization problems: finding the value that minimizes or
maximizes a function.

For a function of one variable f(x), a value z* is said to be a minimizer of f(z) if

f@*) < f(z) for all z.

Similarly, z* is said to be a maximizer of f(x) if

fl@*) > f(x) for all z.

Notice that a function can have multiple minimizers or maximizers. For example, a constant function like
f(z) =5 is minimized at all values of x, and it’s also maximized at all values of x!

Problem 5.

Consider the function g(t) = 2|3t — 4] + 7. SUGGESTION: Each of these problems can be proven directly
from the definition of minimizer/maximizer above OR using some tool(s) from calculus. You should miz and
match your approaches!

a) Show that t = 4/3 is a minimizer of ¢g(¢) on the interval 0 < ¢ < 2.

Solution: Note that g(t) = 2|3t —4|+7 > 7 since |3t —4| > 0 for all ¢, and thus since g(4/3) =7,
we have g(4/3) < g(t) for all ¢ € [0, 2].

b) Find all maximizers of g(¢) on the interval 0 <¢ < 2.

Solution: If 0 <t < 2, then we can work backwards to bound ¢(t):

0<3t<6
—4<3t—4<2
0<|3t—4/<4
0<23t—4/ <8
7T<23t—4|+7<15

Therefore, g(t) < 15 for all ¢ € [0, 2]; moreover, g(t) = 15 exactly once for ¢ € [0,2] when ¢ = 0.
Therefore ¢ = 0 is the only maximizer of g on [0, 2].

c) BONUS: Fix real numbers a,b € R such that a < b. Find the all maximizers of g(¢) on the interval
a<t<b

Solution: You can mimick the last solution or use some calculus. By Fermat’s theorem (for
extrema), a maximizer t* must be a critical point for g, where— importantly— its derivative is
zero or undefined, or a boundary point on the interval. The derivative ¢’ is never zero and is
undefined at t = 4/3 where, as we saw before, it has a minimizer. Therefore the maximizer(s)
are:

t* = argmax,_, (23t — 4| +7),

which is a compact way of writing the following: either a, b, or both depending on which one(s)




achieve the maximum of of 2|3t — 4] + 7.

Later in the quarter we could use convexity as well.

Problem 6.

Suppose h(y) is a function for a real variable y € R. Answer each of the following statements with TRUE
or FALSE. If your answer is FALSE, write a counter-example. If you answer is TRUE, write a proof.

a) If y* is a minimizer for h, then y* is a minimizer for h2.

Solution: FALSE
Counter-example: Let h(y) = y on the interval [—2,5]. Then y* = —2 is a minimizer for h, but
y* is not a minimizer for A% since h(—2)%? = 4 and h(0)? =0 < 4.

b) If y* is a minimizer for |h|, then y* is a minimizer for |h|?.

Solution: TRUE

If y* is a minimizer for |h|, the |h(y*)] < |h(y)| for all y in the domain of h. Multiplying
both sides by |h(y*)| > 0, we have |h(y*)|? < |h(y)||h(y*)| and since |h(y*)| < |h(y)| it follows
[h(y*)|? < |h(y)||h(y*)] < |h(y)|? and therefore y* is also a minimizer for |h|2.

c) If y* is a maximizer for h, then y* is a maximizer for /|h|.

Solution: FALSE
Counter-example: Let h(y) = y on the interval [—5,2]. Then y* = 2 is a maximizer for h, but y*

is not a maximizer for /|h| since \/|h(2)] = v2 and \/|h(=5)[ = V5 > V2.

d) If y* is a maximizer for h, then y* is a maximizer for h3.

Solution: TRUE
If y* is a minimizer for h, the h(y) < h(y*) for all y in the domain of h. There are three possible
situations we need to consider.

1. If 0 < h(y) < h(y*), then we can multiply across the inequality by h(y)? to get h(y)® <
h(y*)h(y)?. Then, since 0 < h(y) < h(y*), we can write h(y*)h(y)? < h(y*)?h(y) by replacing
one of the copies of h(y). One more time, we get h(y*)?h(y) < h(y*)3. Note that you can’t do
this exact manipulation if either of the terms is negative, since this would involve multiplying
an inequality by a negative term which would reverse the direction. Thus, h(y)3 < h(y*)3.

2. If h(y) < 0 < h(y*), then this is easier because h(y)* < 0 and h(y*)® > 0 (because negative
numbers cubed are negative, and positive numbers cubed are positive). Thus, h(y)? < h(y*)3.

3. If h(y) < h(y*) <0, then 0 < —h(y) < —h(y*). From part (1) it follows that 0 < —h(y)3 <
—h(y*)3, but then h(y)3 < h(y*)® < 0 as desired.

e) If F: R — R is a monotone increasing function (meaning: F(z) < F(y) whenever z < y), and y* is a
minimizer for h, then y* is a minimizer for F(h(y)).

Solution: If y* is a minimizer for h, then h(y*) < h(y) for all y. Thus since F' is monotone,
F(h(y*)) < F(h(y)) and therefore the claim is TRUE.




f) If G: R — R is a monotone decreasing function (meaning: G(z) > G(y) whenever x < y), and y* is
a maximizer for h, then y* is a maximizer for G(h(y)).

Solution: FALSE - y* is a MINIMIZER for G(h(y)). The proof is very similar to (e).
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