
DSC 40A Fall 2025 - Group Work Session 1
due Monday, September 29th at 11:59PM

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. One person from each group should submit your solutions to Gradescope and tag all
group members so everyone gets credit.

This worksheet won’t be graded on correctness, but rather on good-faith effort. Even if you don’t solve any
of the problems, you should include some explanation of what you thought about and discussed, so that you
can get credit for spending time on the assignment.

In order to receive full credit, you must work in a group of two to four students for at least 50 minutes in
your assigned discussion section. You can also self-organize a group and meet outside of discussion section
for 80 percent credit. You may not do the groupwork alone.

1 Objects in Linear Algebra

Problem 1.

Let n, d ≥ 1 be fixed positive integers. For each subproblem, answer with one of the following choices:

• a scalar

• a vector in Rd

• a vector in Rn

• a d× d matrix

• a d× n matrix

• an n× n matrix

• an n× d matrix

a) For each i = 1, ..., d, let x⃗(i) be a vector in Rn. What type of object is:

d∑
i=1

x⃗(i)T x⃗(i)

Solution: A scalar.

b) For each i = 1, ..., d, let x⃗(i) be a vector in Rn. What type of object is:

d∑
i=1

x⃗(i)x⃗(i)T

Solution: An n× n matrix.

c) Let x⃗ be a vector in Rn, and let A be an n× n matrix. What type of object is:

x⃗TAx⃗
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Solution: A scalar.

d) Let x⃗ be a vector in Rn. What type of object is:

x⃗

∥x⃗∥

Solution: A vector in Rn.

e) Let x⃗ be a vector in Rn, and let A be a d× n matrix. What type of object is:

Ax⃗

∥x⃗∥
+ (x⃗TATAx⃗)Ax⃗

Solution: A vector in Rd.

f) Let A be a d× n matrix. Suppose ATA is invertible. What type of object is:

(ATA)−1

Solution: An n× n matrix.

Problem 2.

Let p ≥ 1 be a fixed positive integer and let x, y ∈ Rp be fixed nonzero vectors. Writing x in column vector
notation we have

x =


x1

x2

...
xp

 , (1)

and similarly for y. Of the following ten expressions, five are provably equal (meaning, they are all equal to
each other regardless of x, y). Circle them and eliminate the remaining five “odd ones out” which are not
provably equal (meaning, they are not equal to the other expressions in general unless we “know” x, y).

1. xyT .

2. ∥y∥xT ŷ where ∥y∥ is the length of y and ŷ is the unit vector parallel to y.

3.
∑p−1

i=1 xiyi+1.

4.
(∑p

i=1 (xiyi)
3
)1/3

5.
∑p+2

i=3 xi−2yi−2.

6. (OTx)T (OT y), where O ∈ Rp×p is an orthogonal matrix satisfying OTO = Idp×p.

7. 1
2 (Ax)

T y, where A ∈ Rp×p is any matrix for which yT is a left eigenvector with eigenvalue 2.

8. (U−1x)TUy where U ∈ Rp×p is any nonsingular (i.e. invertible) matrix.

9. 1
∥x∥2Tr

(
yT (yxT )x

)
.

10. 1
∥x∥2Tr

(
yxTxxT

)
.
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Solution: Expressions 2, 5, 6, 7, and 10 are all equal to xT y, i.e., the dot product of x, y.
1. This expression is a matrix multiplication of the vector x (n × 1) and the transpose of the vector y
(n× 1 −→ 1× n). The result will be a n× n matrix.
2. By definition of a unit vector, ŷ = y⃗

∥y∥ . Expand the equation: ∥y∥xT ŷ = ∥y∥xT y⃗
∥y∥ = xT y. This is

equivalent to the dot product.
3. The summation notation is just slightly different from the dot product. The dot product can take
the form of x1y1 + x2y2 + ...xpyp, while this expression evaluates to x1y2 + x2y3 + ...xpyp + 1.

4. This one is testing your understanding on summation notation.
(∑p

i=1 (xiyi)
3
)1/3

is not equivalent

to
∑p

i=1 xiyi, same reason as (a+ b)2 ̸= a2 + b2.
5. Expand the equation, we get

p+2∑
i=3

xi−2 · yi−2 = x3−2 · y3−2 + x4−2 · y4−2 + ...xp+2−2 · yp+2−2 = x1y1 + x2y2 + ... = xT y.

6. Recall (AB)T = BTAT . (OTx)T (OT y) = xTOOT y. Given O is an orthogonal matrix, by definition,
OT = O−1, and by the definition of invertible matrices, O−1O = OO−1, OO−1 = OTO = OOT = Id,
the expression simplifies to xT y.
7. By definition of left eigenvalue, yTA− 2yT . Transpose both sides will get us AT y = 2y. Substitute
this: 1/2(Ax)T y = 1.2xTAT y = 1/2xT (2y) = xT y.
8. Simplifying the expression gets us xT (u−1)TU)y. even though U−1U = Id, our expression is not in
this form. We cannot simplify it further.
9. 1

∥x∥2Tr
(
yT (yxT )x

)
= 1

∥x∥2Tr
(
(yT y)(xTx)

)
= 1

∥x∥2 · ∥x∥2 · ∥y∥2 = ∥y∥2. The Trace function here can

be ignored, because both (yT y) and (xTx) come out to be scalars, and the sum of the diagonal of a
scalar value is just itself.
10. 1

∥x∥2Tr
(
yxTxxT

)
= 1

∥x∥2Tr
(
y(xTx)xT

)
= 1

∥x∥2 · ∥x∥2Tr
(
yxT

)
= Tr(yxT ). The matrix of yxT is:

y1x1 y1x2 · · · y1xp

y2x1 y2x2 · · · y2xp

...
...

. . .
...

ypx1 ypx2 · · · ypxp


The trace is the sum of the diagonal values. We have y1x1 + y2x2 + .... = xT y.
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2 Matrix Multiplication

This is intended to help review some concepts from MATH 18 related to matrix-vector and matrix-matric
multiplication.

Problem 3.

Let’s brush up on our matrix-vector multiplication skills. Suppose we have a matrix and a vector defined as
follows:

X =

1 2 3
1 2 3
5 1 −2

 , w⃗ =

 4
3
−1


Evaluate Xw⃗.

Solution: 1 2 3
1 2 3
5 1 −2

 4
3
−1

 =

 1 · 4 + 2 · 3 + 3 · (−1)
1 · 4 + 2 · 3 + 3 · (−1)

5 · 4 + 1 · 3 + (−2) · (−1)

 =

 7
7
25



Problem 4.

Perhaps you noticed something while computing Xw⃗ in the above problem. In particular, you may recall
from MATH 18 that the matrix-vector multiplication, Xw⃗, is a linear combination of the columns of the
matrix, X, by the appropriate weights from the vector, w⃗.

Fill in each blank below with a single number using the numbers from Problem 4.

Xw⃗ =

 +

 +

 
Solution:

Xw⃗ = 4

11
5

+ 3

22
1

+ (−1)

 3
3
−2



Problem 5.

Now, let’s generalize this concept. Let X be an n× d matrix, such that each column, x⃗(i) is a vector in Rn.
Let w⃗ be a vector in Rd. Fill in the blanks:

Xw⃗ =

□∑
i=1

Solution:

Xw⃗ =

d∑
i=1

wix⃗
(i)
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3 Subspaces and Bases

This section contains some practice problems to help review the concepts of vector subspaces and vector
space bases.

Problem 6.

Start here: What are the three criteria for a subset S of some vector space V to qualify as a vector
subspace?

Solution: (1) S must be nonempty, or equivalently as an axiom, 0 ∈ S; (2) S must be closed under
scalar multiplication; and (3), S must be closed under vector addition.

Problem 7.

For each of the following scenarios, determine whether the provided subset S qualifies as a vector subspace.
Bonus: What is the dimension of S in the case(s) where it is a vector subspace?

a) V = Rn and S is the set of all x ∈ V such that xT1n = 0 where 1n is the vector of all ones.

Solution: This is a subspace and its dimension is n− 1.

b) V = Rn and S is the set of all x ∈ V such that
∑n

i=1 xi = −2.

Solution: Not a subspace - does not contain the zero vector.

c) V = Rn×n and S is the set of all matrices A ∈ V such that A2 = A

Solution: Not a subspace - S is not closed under scalar multiplication, e.g., A = Idn×n and
λ = 2.

d) V = Rn×n and S is the set of all matrices A ∈ V such that BA = 0n×n for some matrix B.

Solution: This is a subspace and its dimension is nnullity(B) where nullity(B) is the dimension
of the kernel of B, or n− rank(B). To see this, we identify A with a collection of column vectors
A = [x1, . . . , xn] with xi ∈ Rn. Then BA = [Bx1, . . . , Bxn]. Therefore, in order for BA = 0, we
must have Bx1 = 0, Bx2 = 0, and so on; i.e., each xi must belong to the kernel of B. Therefore,
the collection of matrices A satisfying BA = 0 must be identical to n copies of ker(B).

Problem 8.

Another quick check: What are the three criteria for a subset B of some vector space V to qualify as a
basis for V ?

Solution: (1) S must be nonempty; (2) the vectors in S must be linearly independent; and (3), S must
span V .

Problem 9.

Let ei be the i-th standard basis vector which is one at index i and zero otherwise. Which of the following
sets {xi}ni=1 form a basis of Rn?
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a) xi = ei − e1 for 1 ≤ i ≤ n.

Solution: Not a basis, x1 = 0n, and no set containing the zero vector can also be linearly
independent.

b) xi = ei + 1n for 1 ≤ i ≤ n where 1n is the vector of all ones. Hint: Check this for case n = 2 and
n = 3 to get started.

Solution: This is a basis. For (2), if we set a linear combination of the xi’s equal to the zero
vector for some constants ci, we get

n∑
i=1

cixi =

n∑
i=1

ciei +

(
n∑

i=1

ci

)
1n = 0n.

Thus,
∑n

i=1 ciei = − (
∑n

i=1 ci)1n. If one compares entries of the vectors side-by-side, we see that
cj = − (

∑
i ci) for all 1 ≤ j ≤ n. Thus all of the cj ’s are actually the same number, call it a.

Then a = −na for which the only solution is a = 0. Since {xi} has n linearly independent vectors
in Rn, it must also span Rn and (3) follows.

c) xi = iei. In other words, x1 = e1, x2 = 2e2, x3 = 3e3, and so on.

Solution: This is a basis. Perhaps the easiest way to check is to observe that the matrix
X = [x1x2 · · ·xn] is the diagonal matrix

X =


1

2
. . .

n


for which we can immediately find the inverse

X =


1

1/2
. . .

1/n


thus X is nonsingular, and therefore the set is a basis.
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