Lecture 10

Feature Engineering, Gradient Descent

1

DSC 40A, Spring 2024

Announcements

- Homework 4 is due tonight.
 - Some office hours are now in HDSI **3**55 see the calendar for more details.
- Homework 2 scores are available on Gradescope.
 - Regrade requests are due on Monday.
- We will have a review session on **tomorrow from 2-5PM in Center Hall 109** where we'll go over old homework and exam problems.
 - It'll be recorded!

The Midterm Exam is on Tuesday, May 7th!

- The Midterm Exam is on Tuesday, May 7th in class.
 - You must take it during your scheduled lecture session.
 - You will receive a randomized seat assignment over the weekend.
- 80 minutes, on paper, no calculators or electronics.
 - You are allowed to bring one two-sided index card (4 inches by 6 inches) of notes that you write by hand (no iPad).
- Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-4.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

Agenda

- Feature engineering and transformations.
- Minimizing functions using gradient descent.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Feature engineering and transformations

Question: Would a linear hypothesis function work well on this dataset?

Linear in the parameters

• We can fit rules like:

$$w_0+w_1x+w_2x^2 \qquad w_1e^{-x^{(1)^2}}+w_2\cos(x^{(2)}+\pi)+w_3rac{\log 2x^{(3)}}{x^{(2)}}$$

• This includes arbitrary polynomials.

- These are all linear combinations of (just) features.
- We can't fit rules like:

$$w_0 + e^{w_1 x} \qquad w_0 + \sin(w_1 x^{(1)} + w_2 x^{(2)}) \; ,$$

• These are **not** linear combinations of just features!

• We can have any number of parameters, as long as our hypothesis function is **linear in the parameters**, or linear when we think of it as a function of the parameters.

Example: Amdahl's Law

• Amdahl's Law relates the runtime of a program on *p* processors to the time to do the sequential and nonsequential parts on one processor.

$$H(p) = t_{
m S} + rac{t_{
m NS}}{p}$$

• Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: Fitting
$$H(x) = w_0 + w_1 \cdot rac{1}{x}$$

Processors	Time (Hours)
1	8
2	4
4	3

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

$$H(x)=w_0e^{w_1x}$$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- **Possible solution**: Try to apply a **transformation**.

Transformations

• Question: Can we re-write $H(x) = w_0 e^{w_1 x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x) = \log H(x)$.
- $ec{b}$ is related to $ec{w}$ by $b_0 = \log w_0$ and $b_1 = w_1$.
- Our new observation vector, \vec{z} , is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ \dots \\ \log y_n \end{bmatrix}$.
 - $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
 - Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - $\circ\;$ For example, $H(x)=w_0\sin(w_1x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2$$

- One method: gradient descent, the topic we're going to look at next!
- Hypothesis functions that are linear in the parameters are much easier to work with.

Answer at q.dsc40a.com

Which hypothesis function is **not** linear in the parameters?

- A. $H(ec{x}) = w_1(x^{(1)}x^{(2)}) + rac{w_2}{x^{(1)}} \mathrm{sin}\left(x^{(2)}
 ight)$
- B. $H(ec{x}) = 2^{w_1} x^{(1)}$
- C. $H(\vec{x}) = \vec{w} \cdot \operatorname{Aug}(\vec{x})$
- D. $H(ec{x}) = w_1 \cos(x^{(1)}) + w_2 2^{x^{(2)} \log x^{(3)}}$
- E. More than one of the above.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- Now, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
 - Finish gradient descent.
 - $\circ\,$ Look at a technique for identifying patterns in data when there is no "right answer" \vec{y} , called **clustering**.
 - Switch gears to **probability**.

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing functions using gradient descent

Minimizing empirical risk

- Repeatedly, we've been tasked with **minimizing** the value of empirical risk functions.
 - Why? To help us find the **best** model parameters, h^* or w^* , which help us make the **best** predictions!
- We've minimized empirical risk functions in various ways.

$$egin{aligned} &\circ \ R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2 \ &\circ \ R_{ ext{abs}}(w_0, w_1) = rac{1}{n} \sum_{i=1}^n |y_i - (w_0 + w_1 x)| \ &\circ \ R_{ ext{sq}}(ec w) = rac{1}{n} \|ec y - X ec w\|^2 \end{aligned}$$

Minimizing arbitrary functions

- Assume f(t) is some **differentiable** single-variable function.
- When tasked with minimizing f(t), our general strategy has been to: i. Find $\frac{df}{dt}(t)$, the derivative of f. ii. Find the input t^* such that $\frac{df}{dt}(t^*) = 0$.
- However, there are cases where we can find $\frac{df}{dt}(t)$, but it is either difficult or impossible to solve $\frac{df}{dt}(t^*) = 0$.

$$f(t) = 5t^4 - t^3 - 5t^2 + 2t - 9$$

• Then what?

What does the derivative of a function tell us?

- Goal: Given a differentiable function f(t), find the input t^* that minimizes f(t).
- What does $rac{d}{dt}f(t)$ mean?

See dsc40a.com/resources/lectures/lec10 for an animated version of the previous slide!

Let's go hiking!

- Further, suppose it's really cloudy
 meaning you can only see a few feet around you.
- How would you get to the bottom?

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is positive \checkmark :

- Increasing t increases f.
- This means the minimum must be to the **left** of the point (t, f(t)).
- Solution: Decrease $t \mathbf{V}$.

Searching for the minimum

Suppose we're given an initial guess for a value of t that minimizes f(t).

If the slope of the tangent line at f(t) is negative M:

- Increasing t decreases f.
- This means the minimum must be to the **right** of the point (t, f(t)).
- Solution: Increase t 🔂.

Intuition

- To minimize f(t), start with an initial guess t_0 .
- Where do we go next?

$$egin{array}{l} \circ & ext{ If } rac{df}{dt}(t_0) > 0 ext{, decrease } t_0. \ \end{array} \ o & ext{ If } rac{df}{dt}(t_0) < 0 ext{, increase } t_0. \end{array}$$

• One way to accomplish this:

$$t_1 = t_0 - \frac{df}{dt}(t_0)$$

Gradient descent

To minimize a **differentiable** function f:

- Pick a positive number, α . This number is called the **learning rate**, or **step size**.
- Pick an **initial guess**, t_0 .
- Then, repeatedly update your guess using the **update rule**:

$$t_{i+1} = t_i - lpha rac{df}{dt}(t_i)$$

- Repeat this process until **convergence** that is, when t doesn't change much.
- This procedure is called gradient descent.

What is gradient descent?

- Gradient descent is a numerical method for finding the input to a function f that minimizes the function.
- Why is it called **gradient** descent?
 - The gradient is the extension of the derivative to functions of multiple variables.
 - We will see how to use gradient descent with multivariate functions next class.
- What is a **numerical** method?
 - A numerical method is a technique for approximating the solution to a mathematical problem, often by using the computer.
- Gradient descent is **widely used** in machine learning, to train models from linear regression to neural networks and transformers (including ChatGPT)!

See dsc40a.com/resources/lectures/lec10 for animated examples of gradient descent, and see this notebook for the associated code!

Lingering questions

Next class, we'll explore the following ideas:

- When is gradient descent *guaranteed* to converge to a global minimum?
 - What kinds of functions work well with gradient descent?
- How do I choose a step size?
- How do I use gradient descent to minimize functions of multiple variables, e.g.:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$$

Gradient descent and empirical risk minimization

- While gradient descent can minimize other kinds of differentiable functions, its most common use case is in minimizing empirical risk.
- For example, consider:
 - $\circ\,$ The constant model, H(x)=h.
 - $\circ\;$ The dataset -4,-2,2,4.
 - $\circ\;$ The initial guess $h_0=4$ and the learning rate $lpha=rac{1}{4}.$
- Exercise: Find h_1 and h_2 .