Lecture 10

Feature Engineering, Gradient
Descent

DSC 40A, Spring 2024



Announcements

e Homework 4 is due tonight.
o Some office hours are now in HDSI 355 - see the calendar for more details.

e Homework 2 scores are available on Gradescope.
o Regrade requests are due on Monday.

o We will have a review session on tomorrow from 2-5PM in Center Hall 109 where
we'll go over old homework and exam problems.
o |t'll be recorded!


https://dsc40a.com/calendar

The Midterm Exam is on Tuesday, May 7th!
e The Midterm Exam is on Tuesday, May 7th in class.
o You must take it during your scheduled lecture session.
o You will receive a randomized seat assignment over the weekend.

e 80 minutes, on paper, no calculators or electronics.
o You are allowed to bring one two-sided index card (4 inches by 6 inches) of
notes that you write by hand (no iPad).

e Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-4.

e Prepare by practicing with old exam problems at practice.dsc40a.com.
o Problems are sorted by topic!


https://practice.dsc40a.com/

Agenda

o Feature engineering and transformations.

e Minimizing functions using gradient descent.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/

ransformations




MPG vs. Horsepower
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Question: Would a linear hypothesis function work well on this dataset?



Linear in the parameters

e We can fit rules like:

()2
wo + wix + wez? wie ¥+ wo cos(a:(Q) + ) + ws

o This includes arbitrary polynomials.

o These are all linear combinations of (just) features.

e We can't fit rules like:

w1

wy + e wo + sin(wizY + wez?)

o These are not linear combinations of just features!

e \We can have any number of parameters, as long as our hypothesis function is linear in
the parameters, or linear when we think of it as a function of the parameters.



Example: Amdahl's Law

e Amdanhl's Law relates the runtime of a program on p processors to the time to do the
seqguential and nonsequential parts on one processor.

tNsS
H(P):ts+%

e Collect data by timing a program with varying numbers of processors:

Processors Time (Hours)
1 8
2 4
4 3



Example: Fitting H(z) = wqy + w; - %

Processors Time (Hours)
1 8
2 4
4 3
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How do we fit hypothesis functions that aren't linear in the
parameters?

e Suppose we want to fit the hypothesis function:
H(z) = woe™”
e Thisis not linear in terms of wgy and w1, so our results for linear regression don't apply.

e Possible solution: Try to apply a transformation.
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Transformations

e Question: Can we re-write H () = wge™'* as a hypothesis function that is linear in
the parameters?

12



Transformations

e Solution: Create a new hypothesis function, T(a:) with parameters by and b1, where
T(ZE) = by + b1x.

This hypothesis function is related to H () by the relationship T'(z) = log H(x).

bis related to W by by = log wg and b; = w;.

log y |

: L. |logys
e Our new observation vector, z, is

log yn, |

o T'(x) = by + byxislinear in its parameters, by and b;.

e Use the solution to the normal equations to find b*, and the relationship between b
and w to find w*.



Once again, let's try it out! Follow along in this notebook.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec10/lec10-code.ipynb

Non-linear hypothesis functions in general

e Sometimes, it's just not possible to transform a hypothesis function to be linear in
terms of some parameters.

e |[nthose cases, you'd have to resort to other methods of finding the optimal
parameters.

o For example, H(x) = wq sin(wix) can't be transformed to be linear.

o But, there are other methods of minimizing mean squared error:

1 & :
Rsq(wo, w1) = — Z(yz — wo sin(w;z))”

n

o One method: gradient descent, the topic we're going to look at next!

o Hypothesis functions that are linear in the parameters are much easier to work with.
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DK

Question =

Answer at g.dsc40a.com

Which hypothesis function is not linear in the parameters?

o A H(_') = w1 (x (1):13(2)) + —&sin (m(z))

e E. More than one of the above.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform

Roadmap

e This is the end of the content that's in scope for the Midterm Exam.

e Now, we'll introduce gradient descent, a technique for minimizing functions that can't
be minimized directly using calculus or linear algebra.

o After the Midterm Exam, we'll:
o Finish gradient descent.

o Look at a technique for identifying patterns in data when there is no "right
answer" g, called clustering.

o Switch gears to probability.
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The modeling recipe

1. Choose a model.

2.Choose a loss function.

3. Minimize average loss to find optimal model parameters.
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g gradient descent
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Minimizing empirical risk

o Repeatedly, we've been tasked with minimizing the value of empirical risk functions.
o Why? To help us find the best model parameters, h* or w*, which help us make
the best predictions!

o We've minimized empirical risk functions in various ways.

1 X
o Rug(h) = =3 (i~ h)?
1=1
1
© Rabs(w07w1) — ; Z ’yz — (w() =+ ’wlw)’
1=1
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Minimizing arbitrary functions

« Assume f(t) is some differentiable single-variable function.
¢ When tasked with minimizing f(t), our general strategy has been to:
i. Find % (t), the derivative of f.
ii. Find the input £* such that Z—{(t*) = 0.
e However, there are ca;,?s where we can find CCZZ—{ (t) but it is either difficult or

impossible to solve —-(t*) = 0.

f(t) =5t —¢> — 5t +2t — 9

e Then what?
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What does the derivative of a function tell us?

o Goal: Given a differentiable function f(t), find the input t* that minimizes f(¢).

e What does -2 f(t) mean?

fO=5t" -1 =52 +2t-9

f@)

—10-

—11 -
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See dsc40a.com/resources/lectures/lec10 for an animated version of the
previous slide!
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https://dsc40a.com/resources/lectures/lec10

Let's go hiking!

e Suppose you're at the top of a
mountain A and need to get to the
bottom.

steep slope
Value of D is high
So take large steps

e Further, suppose it's really cloudy

slope is less steep
alue i

, meaning you can only see a few
feet around you.

e How would you get to the bottom?



Searching for the minimum

5t — 3 — 512 +2t—9

f(t)

Tangent line to f(t) at t = -0.25
Slope of tangent line: 4.0

Suppose we're given an initial
guess for a value of £ that
minimizes f(t).

If the slope of the tangent line
at f(t) is positive »/:
e Increasing t increases f.

e This means the minimum
must be to the left of the

point (¢, f(t)).

e Solution: Decrease t 4.
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Searching for the minimum

5t — 3 — 512 +2t—9

f(t)

_10_

—114

-12

Tangent line to f(t) att = -1
Slope of tangent line: -11

T T
-0.5 0

T
0.5

Suppose we're given an initial
guess for a value of £ that
minimizes f(t).

If the slope of the tangent line
at f(t) is negative "\:
e Increasing t decreases f.

e This means the minimum
must be to the right of the

point (¢, f(t)).

e Solution: Increase t £3.
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Intuition

o To minimize f(t), start with an initial guess t.
e \Where do we go next?

o If Z—{(to) > 0, decrease t.

o If Z—{(to) < 0, increase .

e One way to accomplish this:

daf

T

(to)
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Gradient descent

To minimize a differentiable function f:

e Pick a positive number, .. This number is called the learning rate, or step size.

Pick an initial guess, {.
Then, repeatedly update your guess using the update rule:

d
b =t~ a0 (1)

Repeat this process until convergence - that is, when ¢ doesn't change much.

This procedure is called gradient descent.
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What is gradient descent?

« Gradient descent is a numerical method for finding the input to a function f that
minimizes the function.

e Why is it called gradient descent?

o The gradient is the extension of the derivative to functions of multiple variables.

o We will see how to use gradient descent with multivariate functions next class.
e What is a numerical method?

o A numerical method is a technique for approximating the solution to a
mathematical problem, often by using the computer.

e Gradient descent is widely used in machine learning, to train models from linear
regression to neural networks and transformers (includng ChatGPT)!
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See dsc40a.com/resources/lectures/lec10 for animated examples of
gradient descent, and see this notebook for the associated code!
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https://dsc40a.com/resources/lectures/lec10
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec10/lec10-code.ipynb

Lingering questions
Next class, we'll explore the following ideas:

e When is gradient descent guaranteed to converge to a global minimum?
o What kinds of functions work well with gradient descent?

e How do | choose a step size?

e How do | use gradient descent to minimize functions of multiple variables, e.g.:

Ryy(wo, w1) = - Zn:(yz' — (wp + wiz;))”

n
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Gradient descent and empirical risk minimization

o While gradient descent can minimize
other kinds of differentiable functions, its
most common use case is in minimizing
empirical risk.

e For example, consider:

o The constant model, H(xz) = h.
o The dataset —4, —2, 2, 4.

o The initial guess hy = 4 and the
1

learning rate = .

e Exercise: Find h1 and h».
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