Lecture 9

Multiple Linear Regression

1

DSC 40A, Spring 2024

Announcements

- Homework 4 is due on Thursday, May 2nd.
 - Some office hours are now in HDSI **3**55 see the calendar for more details.
- Homework 2 scores are available on Gradescope.
 - Regrade requests are due on Monday.

The Midterm Exam is on Tuesday, May 7th!

- The Midterm Exam is on Tuesday, May 7th in class.
 - You must take it during your scheduled lecture session.
 - You will receive a randomized seat assignment over the weekend.
- 80 minutes, on paper, no calculators or electronics.
 - You are allowed to bring one two-sided index card (4 inches by 6 inches) of notes that you write by hand (no iPad).
- Content: Lectures 1-9, Homeworks 1-4, Groupworks 1-4.
- We will have a review session on **on Friday from 2-5PM in Center Hall 109** where we'll go over old homework and exam problems.
- Prepare by practicing with old exam problems at practice.dsc40a.com.
 - Problems are sorted by topic!

Agenda

- Multiple linear regression.
- Interpreting parameters.
- Feature engineering and transformations.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Multiple linear regression

	departure_hour	day_of_month	minutes
0	10.816667	15	68.0
1	7.750000	16	94.0
2	8.450000	22	63.0
3	7.133333	23	100.0
4	9.150000	30	69.0
•••			

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

 $ext{pred. commute} = H(ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour}$

- Now, we'll try and fit a multiple linear regression model of the form: pred. commute $= H(ext{departure hour})$ $= w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$
- Linear regression with multiple features is called multiple linear regression.
- How do we find w_0^* , w_1^* , and w_2^* ?

Geometric interpretation

• The hypothesis function:

```
H(	ext{departure hour}) = w_0 + w_1 \cdot 	ext{departure hour}
```

looks like a **line** in 2D.

- Questions:
 - $\circ\,$ How many dimensions do we need to graph the hypothesis function: $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$
 - What is the shape of the hypothesis function?

Commute Time vs. Departure Hour and Day of Month

Our new hypothesis function is a **plane** in 3D!

Our goal is to find the **plane** of best fit that pierces through the cloud of points.

The setup

• Suppose we have the following dataset.

	departure_hour	day_of_month	minutes
row			
1	8.45	22	63.0
2	8.90	28	89.0
3	8.72	18	89.0

• We can represent each day with a **feature vector**, \vec{x} :

The hypothesis vector

• When our hypothesis function is of the form:

 $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$ the hypothesis vector $ec{h} \in \mathbb{R}^n$ can be written as:

$$ec{h} = egin{bmatrix} H(ext{departure hour}_1, ext{day}_1)\ H(ext{departure hour}_2, ext{day}_2)\ \dots\ H(ext{departure hour}_n, ext{day}_n) \end{bmatrix} = egin{bmatrix} 1 & ext{departure hour}_2 & ext{day}_1\ 1 & ext{departure hour}_2 & ext{day}_2\ \dots\ 1 & ext{departure hour}_n & ext{day}_n \end{bmatrix} egin{bmatrix} w_0\ w_1\ w_2 \end{bmatrix}$$

Finding the optimal parameters

• To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $X \in \mathbb{R}^{n \times 3}$ and **observation vector** $\vec{y} \in \mathbb{R}^n$:

$$X = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} \text{commute time}_1 \\ \text{commute time}_2 \\ \vdots \\ \text{commute time}_n \end{bmatrix}$$

• Then, all we need to do is solve the **normal equations**:

$$X^T X ec{w}^* = X^T ec{y}$$

If $X^T X$ is invertible, we know the solution is:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

Notation for multiple linear regression

- We will need to keep track of multiple features for every individual in our dataset.
 - In practice, we could have hundreds or thousands of features!
- As before, subscripts distinguish between individuals in our dataset. We have *n* individuals, also called **training examples**.
- Superscripts distinguish between features. We have d features.

departure hour: $x^{(1)}$ day of month: $x^{(2)}$

Think of $x^{(1)}$, $x^{(2)}$, ... as new variable names, like new letters.

Augmented feature vectors

• The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$egin{aligned} ec{x}^{(1)} \ ec{x}^{(2)} \ ec{z}^{(d)} \end{bmatrix} & ext{Aug}(ec{x}) = egin{bmatrix} 1 \ ec{x}^{(1)} \ ec{x}^{(2)} \ ec{w} = egin{bmatrix} w_0 \ ec{w}_1 \ w_2 \ ec{z} \ ec{z}^{(d)} \end{bmatrix} & ec{w} = egin{bmatrix} w_0 \ ec{w}_1 \ ec{w}_2 \ ec{z} \ ec{z}^{(d)} \end{bmatrix} \end{aligned}$$

• Then, our hypothesis function is:

$$egin{aligned} H(ec{m{x}}) &= w_0 + w_1 m{x}^{(1)} + w_2 m{x}^{(2)} + \ldots + w_d m{x}^{(d)} \ &= ec{w} \cdot \operatorname{Aug}(ec{m{x}}) \end{aligned}$$

The general problem

• We have n data points, $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots, (\vec{x}_n, y_n)$, where each \vec{x}_i is a feature vector of d features:

$$ec{x_i} = egin{bmatrix} x_i^{(1)} \ x_i^{(2)} \ ec{x}_i^{(d)} \ ec{x}_i^{(d)} \end{bmatrix}$$

• We want to find a good linear hypothesis function:

$$egin{aligned} H(ec{x}) &= w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)} \ &= ec{w} \cdot \operatorname{Aug}(ec{x}) \end{aligned}$$

The general solution

• Define the design matrix $X \in \mathbb{R}^{n \times (d+1)}$ and observation vector $\vec{y} \in \mathbb{R}^{n}$:

$$X = egin{bmatrix} 1 & x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(d)} \ 1 & x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(d)} \ dots & dots &$$

• Then, solve the **normal equations** to find the optimal parameter vector, \vec{w}^* :

$$X^T X \vec{w}^* = X^T \vec{y}$$

Terminology for parameters

- With d features, $ec{w}$ has d+1 entries.
- w_0 is the **bias**, also known as the **intercept**.
- w_1, w_2, \ldots, w_d each give the **weight**, or **coefficient**, or **slope**, of a feature.

$$H(\vec{x}) = w_0 + w_1 x^{(1)} + w_2 x^{(2)} + \ldots + w_d x^{(d)}$$

Interpreting parameters

Example: Predicting sales

- For each of 26 stores, we have:
 - net sales,
 - $\circ~$ square feet,
 - inventory,
 - advertising expenditure,
 - district size, and
 - number of competing stores.
- Goal: Predict net sales given the other five features.
- To begin, we'll start trying to fit the hypothesis function to predict sales:

 $H(ext{square feet}, ext{competitors}) = w_0 + w_1 \cdot ext{square feet} + w_2 \cdot ext{competitors}$

Answer at q.dsc40a.com

 $H(ext{square feet}, ext{competitors}) = w_0 + w_1 \cdot ext{square feet} + w_2 \cdot ext{competitors}$

What will be the signs of w_1^* and w_2^* ?

- A. $w_1^*+ \qquad w_2^*+$
- B. $w_1^* + w_2^* -$
- A. w_1^* w_2^* +
- A. $w_1^*- w_2^*-$

Let's find out! Follow along in this notebook.

Answer at q.dsc40a.com

Which feature is most "important"?

- A. square feet: $w_1^* = 16.202$
- B. competitors: $w_2^* = -5.311$
- C. inventory: $w_2^*=0.175$
- D. advertising: $w^*_3=11.526$
- + E. district size: $w_4^* = 13.580$

Which features are most "important"?

- The most important feature is **not necessarily** the feature with largest magnitude weight.
- Features are measured in different units, i.e. different scales.
 - $\circ~$ Suppose I fit one hypothesis function, H_1 , with sales in US dollars, and another hypothesis function, H_2 , with sales in Japanese yen (1 USD \approx 157 yen).
 - Sales is just as important in both hypothesis functions.
 - $\,\circ\,$ But the weight of sales in H_1 will be 157 times larger than the weight of sales in $H_2.$
- Solution: If you care about the interpretability of the resulting weights, standardize each feature before performing regression, i.e. convert each feature to standard units.

Standard units

• Recall: to convert a feature x_1, x_2, \ldots, x_n to standard units, we use the formula:

$$x_{i\;(\mathrm{su})} = rac{x_i - ar{x}}{\sigma_x}$$

• Example: 1, 7, 7, 9.

• Mean:
$$\frac{1+7+7+9}{4} = \frac{24}{4} = 6.$$

• Standard deviation:

$$SD = \sqrt{\frac{1}{4}((1-6)^2 + (7-6)^2 + (7-6)^2 + (9-6)^2)} = \sqrt{\frac{1}{4} \cdot 36} = 3$$

• Standardized data:

$$1 \mapsto \frac{1-6}{3} = \boxed{-\frac{5}{3}} \qquad 7 \mapsto \frac{7-6}{3} = \boxed{\frac{1}{3}} \qquad 7 \mapsto \boxed{\frac{1}{3}} \qquad 9 \mapsto \frac{9-6}{3} = \boxed{1}_{24}$$

Standard units for multiple linear regression

- The result of standardizing each feature (separately!) is that the units of each feature are on the same scale.
 - There's no need to standardize the outcome (net sales), since it's not being compared to anything.
 - Also, we can't standardize the column of all 1s.
- Then, solve the normal equations. The resulting $w_0^*, w_1^*, \ldots, w_d^*$ are called the standardized regression coefficients.
- Standardized regression coefficients can be directly compared to one another.
- Note that standardizing each feature does not change the MSE of the resulting hypothesis function!

Once again, let's try it out! Follow along in this notebook.

Feature engineering and transformations

Question: Would a linear hypothesis function work well on this dataset?

A quadratic hypothesis function

• It looks like there's some sort of quadratic relationship between horsepower and MPG in the last scatter plot. We want to try and fit a hypothesis function of the form:

$$H(x) = w_0 + w_1 x + w_2 x^2$$

- Note that while this is quadratic in horsepower, it is **linear in the parameters**!
- That is, it is a linear combination of features.
- We can do that, by choosing our two "features" to be x_i and x_i^2 , respectively.
 - $\circ~$ In other words, $x_i^{(1)}=x_i$ and $x_i^{(2)}=x_i^2.$
 - More generally, we can create new features out of existing features.

A quadratic hypothesis function

- Desired hypothesis function: $H(x) = w_0 + w_1 x + w_2 x^2$.
- The resulting design matrix looks like:

$$X = egin{bmatrix} 1 & x_1 & x_1^2 \ 1 & x_2 & x_2^2 \ \dots & & \ 1 & x_n & x_n^2 \end{bmatrix}$$

• To find the optimal parameter vector \vec{w}^* , we need to solve the **normal equations**!

$$X^T X \vec{w}^* = X^T \vec{y}$$

More examples

• What if we want to use a hypothesis function of the form:

 $H(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3$?

• What if we want to use a hypothesis function of the form: $H(x) = w_1 rac{1}{x^2} + w_2 \sin x + w_3 e^x$?

Feature engineering

- The process of creating new features out of existing information in our dataset is called **feature engineering**.
- In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
- In the future you'll learn how to do other things, like encode categorical information.
 - You'll be exposed to this in Homework 4, Problem 5!

Non-linear functions of multiple features

• Recall our earlier example of predicting sales from square footage and number of competitors. What if we want a hypothesis function of the form:

$$egin{aligned} H(ext{sqft}, ext{comp}) &= w_0 + w_1 \cdot ext{sqft} + w_2 \cdot ext{sqft}^2 + w_3 \cdot ext{comp} + w_4 \cdot (ext{sqft} \cdot ext{comp}) \ &= w_0 + w_1 s + w_2 s^2 + w_3 c + w_4 sc \end{aligned}$$

• The solution is to choose a design matrix accordingly:

$$X = egin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1c_1 \ 1 & s_2 & s_2^2 & c_2 & s_2c_2 \ dots & dots &$$

Finding the optimal parameter vector, $ec{w}^*$

• As long as the form of the hypothesis function permits us to write $\vec{h} = X\vec{w}$ for some X and \vec{w} , the mean squared error is:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - Xec{w}\|^2$$

• Regardless of the values of X and \vec{y} , the value of \vec{w}^* that minimizes $R_{\rm sq}(\vec{w})$ is the solution to the **normal equations**:

$$X^T X \vec{w}^* = X^T \vec{y}$$

Linear in the parameters

• We can fit rules like:

$$w_0+w_1x+w_2x^2 \qquad w_1e^{-x^{(1)^2}}+w_2\cos(x^{(2)}+\pi)+w_3rac{\log 2x^{(3)}}{x^{(2)}}$$

• This includes arbitrary polynomials.

- These are all linear combinations of (just) features.
- We can't fit rules like:

$$w_0 + e^{w_1 x} \qquad w_0 + \sin(w_1 x^{(1)} + w_2 x^{(2)}) \; ,$$

• These are **not** linear combinations of just features!

• We can have any number of parameters, as long as our hypothesis function is **linear in the parameters**, or linear when we think of it as a function of the parameters.

Determining function form

- How do we know what form our hypothesis function should take?
- Sometimes, we know from *theory*, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a hypothesis function that will generalize well to unseen data.

Example: Amdahl's Law

• Amdahl's Law relates the runtime of a program on *p* processors to the time to do the sequential and nonsequential parts on one processor.

$$H(p) = t_{
m S} + rac{t_{
m NS}}{p}$$

• Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: Fitting
$$H(x) = w_0 + w_1 \cdot rac{1}{x}$$

Processors	Time (Hours)
1	8
2	4
4	3

How do we fit hypothesis functions that aren't linear in the parameters?

• Suppose we want to fit the hypothesis function:

$$H(x) = w_0 e^{w_1 x}$$

- This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.
- **Possible solution**: Try to apply a **transformation**.

Transformations

• Question: Can we re-write $H(x) = w_0 e^{w_1 x}$ as a hypothesis function that is linear in the parameters?

Transformations

- Solution: Create a new hypothesis function, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
- This hypothesis function is related to H(x) by the relationship $T(x) = \log H(x)$.
- $ec{b}$ is related to $ec{w}$ by $b_0 = \log w_0$ and $b_1 = w_1$.
- Our new observation vector, \vec{z} , is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ \dots \\ \log y_n \end{bmatrix}$.
 - $T(x) = b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
 - Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Once again, let's try it out! Follow along in this notebook.

Non-linear hypothesis functions in general

- Sometimes, it's just not possible to transform a hypothesis function to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - $\circ\;$ For example, $H(x)=w_0\sin(w_1x)$ can't be transformed to be linear.
 - But, there are other methods of minimizing mean squared error:

$$R_{
m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i - w_0 \sin(w_1 x))^2$$

- One method: gradient descent, the topic of the next lecture!
- Hypothesis functions that are linear in the parameters are much easier to work with.

Roadmap

- This is the end of the content that's in scope for the Midterm Exam.
- On Thursday, we'll introduce **gradient descent**, a technique for minimizing functions that can't be minimized directly using calculus or linear algebra.
- After the Midterm Exam, we'll:
 - $\circ~$ Look at a technique for identifying patterns in data when there is no "right answer" \vec{y} , called **clustering**.
 - Switch gears to probability.