Lecture 8

Regression and Linear Algebra

DSC 40A, Spring 2024



Announcements

e Homework 3 is due on Saturday, April 27th.
o We moved some office hours around — we now have some on Saturday!

e Homework 1 scores are available on Gradescope.
o Regrade requests are due on Sunday.

o Groupwork 4 is on Monday. Remember to submit groupworks as a group — you won't
get any credit if you work alone!

e The Midterm Exam is on Tuesday, May 7th in class.
o We will have a review session on Friday, May 3rd from 2-5PM where we'll go
over old homework and exam problems.

o We will be posting many past exams this weekend!



Agenda

e Overview: Spans and projections.
e Regression and linear algebra.

o Multiple linear regression.



DK

Question =

Answer at g.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " & Lecture Questions"
link in the top right corner of dsc40a.com.


https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/
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Projecting onto the span of a single vector

 Question: What vector in span(z) is
closest to 1/?

e The answer is the vector wz, where the
w is chosen to minimize the length of
the error vector:

lefl = v — wz|

o Key idea: To minimize the length of the
error vector, choose w so that the error
vector is orthogonal to .
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Projecting onto the span of a single vector

 Question: What vector in span(z) is
closest to 1/?

e Answer: It is the vector w*, where:

w* = Lt

T
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Projecting onto the span of multiple vectors

e Question: What vector in

—

span(z!), Z(?)) is closest to 1/?

e The answer is the vector
w17 + wyeZ?), where wy and w- are
chosen to minimize the length of the
error vector:

lell = 17 — w12 —wyz®)|

o Key idea: To minimize the length of the
error vector, choose wi and w9 so that
the error vector is orthogonal to both

—

71 and 7(2).

it (1) and Z(2) are linearly
independent, they span a plane.



Matrix-vector products create linear combinations of columns!

e Question: What vector in span(z("), Z(?)) is closest to /?

« To help, we can create a matrix, X, by stacking 71 and 7(?) next to each other:

I R I A
X = |7z 2@ 5 0
R
e Then, instead of writing vectors in span(z ), )
Xw 0

o Key idea: Find w such that the error vector, € =

column of X.

, We can say:

— X, is orthogonal to every



Constructing an orthogonal error vector

o Key idea: Find W € R such that the error vector, ¢ = 17 — X, is orthogonal to the
columns of X.

o Why? Because this will make the error vector as short as possible.

e The w* that accomplishes this satisfies:
XTe=0
o Why? Because X ' € contains the dot products of each column in X with €. If
these are all 0, then € is orthogonal to every column of X!

— T -—) T—)-
e 0] [z
€ — e —




The normal equations

o Key idea: Find W € R such that the error vector, ¢ = 17 — X, is orthogonal to the
columns of X.

« The w* that accomplishes this satisfies: ¢ Assuming X X is invertible, this is the
xTz = 0 vector:

X1 — Xw*) =0 w* = (XTx)1x7T
X'y - X' Xu*=0
— X' Xw* = X"

o This is a big assumption, because it

requires X X to be full rank.
e The last statement is referred to as the o If X7 X is not full rank. then there

normal equations. are infinitely many solutions to the

normal equations,

X Xw* = X1 »



What does it mean?
» Original question: What vector in span(Z ("), 2(?)) is closest to /?

Final answer: Assuming X © X is invertible, it is the vector Xw*, where:

’lTJ* _ (XTX)—lXT

e Revisiting our example:

| | ] 2 -1
X=1|z0 z@] =15 0
A N I B I S

0.7289
Using a computer gives us w* = (X1 X) 71 X1 ~ [ ] .

1.6300

e So, the vector in span(z(!), Z(?)) closest to /s 0.7289% (") 4 1.6300% %),
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An optimization problem, solved
o We just used linear algebra to solve an optimization problem.
e Specifically, the function we minimized is:
error(w) = ||y — Xw||
o This is a function whose input is a vector, w, and whose output is a scalar!

e The input, w*, to error(w) that minimizes it is one that satisfies the normal
equations:

X xor = x71
If X T X is invertible, then the unique solution is:
’ZTJ* _ (XTX)—lXT

o We're going to use this frequently!
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Wait... why do we need linear algebra?

e Soon, we'll want to make predictions using more than one feature.
o Example: Predicting commute times using departure hour and temperature.

e Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

o Use multiple features (input variables).

o Are non-linear in the features, e.g. H(z) = wg + w1z + woz?.

e Let's see if we can put what we've just learned to use.
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Simple linear regression, revisited

Model: H (x) = wy + w1 .

Loss function: (y; — H(z;))?.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

140+

e To find wy and w3, we minimized empirical

120+

e - risk, i.e. average loss:

' RN 2

Ryg(H) = — > (yi — H(zy))
i=1

Observation: Ry, (wo, w1 ) kind of looks
; ; ; ; like the formula for the norm of a vector,

Home Departure Time (AM)
9] = y/vi+v3+ ...+ 02
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)
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Example

Consider H(z) = 2+ .
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Regression and linear algebra

Let's define a few new terms:

e The observation vector is the vector . This is the vector of observed "actual
values”.

« The hypothesis vector is the vector i € R™ with components H(x;).Thisis the
vector of predicted values.

e The error vector is the vector € € R™ with components:
€; — — H(CBZ)

e Key idea: We can rewrite the mean squared error of H as:

1 & 1., 1 . -
Ryg(H) == (v, — H(z;))’ = =||&|* = = |§ - &l
n

n i—1 n
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The hypothesis vector

« The hypothesis vector is the vector h € R™ with components H (z;). This is the
vector of predicted values.

e For the linear hypothesis function H () = w + wix, the hypothesis vector can be
written:
Wy + wiT1

Wy + W1T2

>
]
]

W + W1Ln_



Rewriting the mean squared error

o Define the design matrix X € R"*? as:

1 L1

1 L9
X —

1 z,

. — N Wy
e Define the parameter vector w < R2tobew = [
w1

e Then, h = Xw, so the mean squared error becomes:

|

1 .. - .
qu(H) — _Hy_ hH2 — qu(w) —
n

1

—lly =X
n

—

w

I*
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Minimizing mean squared error, again

e To find the optimal model parameters for simple linear regression, w{'} and w’{ we
previously minimized:

1 n
R, (wp,w1) = — — (wo + wiz;))?
alwn,w1) = 23 (0 = (wo +wir)
e Now that we've reframed the simple linear regression problem in terms of linear
algebra, we can find w{, and w} by finding the w* = |wy 'w’l"]T that minimizes:

S 1 S
Rua(®) = — |7 — X

« Do we already know the w* that minimizes R (10)?
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An optimization problem we've seen before

e The optimal parameter vector, w* = [w(’; w’{]T, is the one that minimizes:

S 1 S
Ryq(0) = — ||y — X"
n

Previously, we found that w* = (X X) 1 X/ minimizes the length of the error

vector, |le]| = ||y — Xw||

e Ry (w)isclosely related to ||€]|:

The minimizer of ||€|| is the same as the minimizer of R, (w)!

Key idea: w* = (X' X) 1 X7 also minimizes Ry, (%)
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The optimal parameter vector, w*

e To find the optimal model parameters for simple linear regression, "w(’; and w’{ we

previously minimized Rsq(wo, w1) = = Y i (v — (wo + wiz;))%
o We found, using calculus, that:
i - Sl DD _ o]
D i1 (T — Z)? Oz
" lwy =Y — wiT|

e Another way of finding optimal model parameters for simple linear regression is to find

the W* that minimizes Ryq (W) = = ||y — Xw||%

o The minimizer, if X7 X is invertible, is the vector |w* = (X X))t X7’

e These formulas are equivalent!



Roadmap

e To give us a break from math, we'll switch to a notebook, linked here, showing that
both formulas - that is, (1) the formulas for wj and wg we found using calculus, and
(2) the formula for w* we found using linear algebra — give the same results.

e Then, we'll use our new linear algebraic formulation of regression to incorporate
multiple features in our prediction process.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec08/lec08-code.ipynb

Summary: Regression and linear algebra

o Define the design matrix X ¢ R"*?, observation vector , and parameter
vector w € R? as:

1 L1
o = [
X =1 . w =
S w1
1 z,

e How do we make the hypothesis vector, h = Xw, as close to v as possible? Use the
parameter vector w*:

,&}* _ (XTX)—IXT

e We chose w* sothat h = Xw?* is the projection of 7/ onto the span of the columns
of the design matrix, X.
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departure_hour day of month minutes

0 10.816667 15 68.0
1 7.750000 16 94.0
2 8.450000 22 63.0
3 7.133333 23 100.0
4 9.150000 30 69.0

So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.
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Incorporating multiple features

In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

pred. commute = H(departure hour)
= wo + w; - departure hour

Now, we'll try and fit a simple linear regression model of the form:

pred. commute = H(departure hour)
= wp + wq - departure hour + wy - day of month

e Linear regression with multiple features is called multiple linear regression.

e How do we find wy, w7, and w5?
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Geometric interpretation

e The hypothesis function:

H (departure hour) = wy + w; - departure hour
looks like a line in 2D.
e Questions:

o How many dimensions do we need to graph the hypothesis function:

H (departure hour) = wg + w; - departure hour + ws - day of month

o What is the shape of the hypothesis function?
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Commute Time vs. Departure Hour and Day of Month

120

100

2Wi] IINWWod

Our new hypothesis function is a plane in 3D!
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The setup
e Suppose we have the following dataset.

departure_hour day of month minutes

row
1 8.45 22 63.0
2 8.90 28 89.0
3 8.72 18 89.0

e We can represent each day with a feature vector, Z:



The hypothesis vector

e When our hypothesis function is of the form:

H (departure hour) = wg + w; - departure hour + w- - day of month

the hypothesis vector h € R™ can be written as:

" H(departure hour,,day;) 1 departure hour; day;]| . _
H (departure hour,, day,) 1 departure hour, day,

>
|
|
S
—t

H (departure hour,,,day,, ) 1 departure hour,, day,,




Finding the optimal parameters

e To find the optimal parameter vector, w*, we can use the design matrix X € R7x3
and observation vector

1 departure hour; day, |
1 departure hour, day,

1 departure hour, day,

e Then, all we need to do is solve the normal equations:
X xw* = x?t
If X1 X is invertible, we know the solution is:

,lz‘]* _ (XTX)_lXT



Roadmap

e To wrap up today's lecture, we'll find the optimal parameter vector w* for our new
two-feature model in code. We'll switch back to our notebook, linked here.

o Next class, we'll present a more general framing of the multiple linear regression
model, that uses d features instead of just two.

o We'll also look at how we can engineer new features using existing features.

o e.g. How can we fit a hypothesis function of the form
H(z) = wo + w1z + waz??
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec08/lec08-code.ipynb

