Lecture 8

Regression and Linear Algebra

DSC 40A, Spring 2024

Announcements

- Homework 3 is due on Saturday, April 27th.
- We moved some office hours around - we now have some on Saturday!
- Homework 1 scores are available on Gradescope.
- Regrade requests are due on Sunday.
- Groupwork 4 is on Monday. Remember to submit groupworks as a group - you won't get any credit if you work alone!
- The Midterm Exam is on Tuesday, May 7th in class.
- We will have a review session on Friday, May 3rd from 2-5PM where we'll go over old homework and exam problems.
- We will be posting many past exams this weekend!

Agenda

- Overview: Spans and projections.
- Regression and linear algebra.
- Multiple linear regression.

Question

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " Lecture Questions"
link in the top right corner of dsc40a.com.

Overview: Spans and projections

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The answer is the vector $w \vec{x}$, where the w is chosen to minimize the length of the error vector:

$$
\|\vec{e}\|=\|\vec{y}-w \vec{x}\|
$$

- Key idea: To minimize the length of the error vector, choose w so that the error vector is orthogonal to \vec{x}.

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- Answer: It is the vector $w^{*} \vec{x}$, where:

$$
w^{*}=\frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}}
$$

Projecting onto the span of multiple vectors

- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- The answer is the vector $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$, where w_{1} and w_{2} are chosen to minimize the length of the error vector:

$$
\|\vec{e}\|=\left\|\vec{y}-w_{1} \vec{x}^{(1)}-w_{2} \vec{x}^{(2)}\right\|
$$

- Key idea: To minimize the length of the error vector, choose w_{1} and w_{2} so that the error vector is orthogonal to both $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.

If $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are linearly independent, they span a plane.

Matrix-vector products create linear combinations of columns!

- Question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- To help, we can create a matrix, X, by stacking $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ next to each other:

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Then, instead of writing vectors in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ as $w_{1} \vec{x}^{(1)}+w_{2} \vec{x}^{(2)}$, we can say:

$$
X \vec{w} \quad \text { where } \vec{w}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

- Key idea: Find \vec{w} such that the error vector, $\vec{e}=\vec{y}-X \vec{w}$, is orthogonal to every column of X.

Constructing an orthogonal error vector

- Key idea: Find $\vec{w} \in \mathbb{R}^{d}$ such that the error vector, $\vec{e}=\vec{y}-X \vec{w}$, is orthogonal to the columns of X.
- Why? Because this will make the error vector as short as possible.
- The \vec{w}^{*} that accomplishes this satisfies:

$$
X^{T} \vec{e}=0
$$

- Why? Because $X^{T} \vec{e}$ contains the dot products of each column in X with \vec{e}. If these are all 0 , then \vec{e} is orthogonal to every column of X !

$$
X^{T} \vec{e}=\left[\begin{array}{l}
-\vec{x}^{(1)^{T}}- \\
-\vec{x}^{(2)^{T}}-
\end{array}\right] \vec{e}=\left[\begin{array}{c}
\vec{x}^{(1)^{T}} \vec{e} \\
\vec{x}^{(2)^{T}} \vec{e}
\end{array}\right]
$$

The normal equations

- Key idea: Find $\vec{w} \in \mathbb{R}^{d}$ such that the error vector, $\vec{e}=\vec{y}-X \vec{w}$, is orthogonal to the columns of X.
- The \vec{w}^{*} that accomplishes this satisfies:

$$
\begin{aligned}
X^{T} \vec{e} & =0 \\
X^{T}\left(\vec{y}-X \vec{w}^{*}\right) & =0 \\
X^{T} \vec{y}-X^{T} X \vec{w}^{*} & =0 \\
\Longrightarrow X^{T} X \vec{w}^{*} & =X^{T} \vec{y}
\end{aligned}
$$

- The last statement is referred to as the normal equations.
- Assuming $X^{T} X$ is invertible, this is the vector:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- This is a big assumption, because it requires $X^{T} X$ to be full rank.
- If $X^{T} X$ is not full rank, then there are infinitely many solutions to the normal equations, $X^{T} X \vec{w}^{*}=X^{T} \vec{y}$.

What does it mean?

- Original question: What vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ is closest to \vec{y} ?
- Final answer: Assuming $X^{T} X$ is invertible, it is the vector $X \vec{w}^{*}$, where:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- Revisiting our example:

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
\vec{x}^{(1)} & \vec{x}^{(2)} \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
5 & 0 \\
3 & 4
\end{array}\right] \quad \vec{y}=\left[\begin{array}{l}
1 \\
3 \\
9
\end{array}\right]
$$

- Using a computer gives us $\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y} \approx\left[\begin{array}{l}0.7289 \\ 1.6300\end{array}\right]$.
- So, the vector in $\operatorname{span}\left(\vec{x}^{(1)}, \vec{x}^{(2)}\right)$ closest to \vec{y} is $0.7289 \vec{x}^{(1)}+1.6300 \vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an optimization problem.
- Specifically, the function we minimized is:

$$
\operatorname{error}(\vec{w})=\|\vec{y}-X \vec{w}\|
$$

- This is a function whose input is a vector, \vec{w}, and whose output is a scalar!
- The input, \vec{w}^{*}, to error (\vec{w}) that minimizes it is one that satisfies the normal equations:

$$
X^{T} X \vec{w}^{*}=X^{T} \vec{y}
$$

If $X^{T} X$ is invertible, then the unique solution is:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- We're going to use this frequently!

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
- Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of matrices and vectors will allow us to find hypothesis functions that:
- Use multiple features (input variables).
- Are non-linear in the features, e.g. $H(x)=w_{0}+w_{1} x+w_{2} x^{2}$.
- Let's see if we can put what we've just learned to use.

Simple linear regression, revisited

- Model: $H(x)=w_{0}+w_{1} x$.
- Loss function: $\left(y_{i}-H\left(x_{i}\right)\right)^{2}$.
- To find w_{0}^{*} and w_{1}^{*}, we minimized empirical risk, i.e. average loss:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}
$$

- Observation: $R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)$ kind of looks like the formula for the norm of a vector,

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$. This is the vector of observed "actual values".
- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components:

$$
e_{i}=y_{i}-H\left(x_{i}\right)
$$

Example

Consider $H(x)=2+\frac{1}{2} x$.

$$
\vec{y}=\quad \vec{h}=
$$

$$
\begin{aligned}
& \vec{e}=\vec{y}-\vec{h}= \\
& R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2} \\
& \\
& =
\end{aligned}
$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$. This is the vector of observed "actual values".
- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components:

$$
e_{i}=y_{i}-H\left(x_{i}\right)
$$

- Key idea: We can rewrite the mean squared error of H as:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=\frac{1}{n}\|\vec{e}\|^{2}=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2}
$$

The hypothesis vector

- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x)=w_{0}+w_{1} x$, the hypothesis vector can be written:

$$
\vec{h}=\left[\begin{array}{c}
w_{0}+w_{1} x_{1} \\
w_{0}+w_{1} x_{2} \\
\vdots \\
w_{0}+w_{1} x_{n}
\end{array}\right]=
$$

Rewriting the mean squared error

- Define the design matrix $X \in \mathbb{R}^{n \times 2}$ as:

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]
$$

- Define the parameter vector $\vec{w} \in \mathbb{R}^{2}$ to be $\vec{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$.
- Then, $\vec{h}=X \vec{w}$, so the mean squared error becomes:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2} \Longrightarrow R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

Minimizing mean squared error, again

- To find the optimal model parameters for simple linear regression, w_{0}^{*} and w_{1}^{*}, we previously minimized:

$$
R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_{0}^{*} and w_{1}^{*} by finding the $\vec{w}^{*}=\left[\begin{array}{ll}w_{0}^{*} & w_{1}^{*}\end{array}\right]^{T}$ that minimizes:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Do we already know the $\overrightarrow{w^{*}}$ that minimizes $R_{\mathrm{sq}}(\vec{w})$?

An optimization problem we've seen before

- The optimal parameter vector, $\vec{w}^{*}=\left[\begin{array}{ll}w_{0}^{*} & w_{1}^{*}\end{array}\right]^{T}$, is the one that minimizes:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Previously, we found that $\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$ minimizes the length of the error vector, $\|\vec{e}\|=\|\vec{y}-X \vec{w}\|$
- $R_{\text {sq }}(\vec{w})$ is closely related to $\|\vec{e}\|$:
- The minimizer of $\|\vec{e}\|$ is the same as the minimizer of $R_{\mathrm{sq}}(\vec{w})$!
- Key idea: $\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$ also minimizes $R_{\mathrm{sq}}(\vec{w})$!

The optimal parameter vector, \vec{w}^{*}

- To find the optimal model parameters for simple linear regression, w_{0}^{*} and w_{1}^{*}, we previously minimized $R_{\mathrm{sq}}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}$.
- We found, using calculus, that:
- $w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}}$
- $w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}$
- Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^{*} that minimizes $R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}$.
- The minimizer, if $X^{T} X$ is invertible, is the vector $\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}$.
- These formulas are equivalent!

Roadmap

- To give us a break from math, we'll switch to a notebook, linked here, showing that both formulas - that is, (1) the formulas for w_{1}^{*} and w_{0}^{*} we found using calculus, and (2) the formula for \vec{w}^{*} we found using linear algebra - give the same results.
- Then, we'll use our new linear algebraic formulation of regression to incorporate multiple features in our prediction process.

Summary: Regression and linear algebra

- Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^{n}$, and parameter vector $\vec{w} \in \mathbb{R}^{2}$ as:

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] \quad \vec{w}=\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right]
$$

- How do we make the hypothesis vector, $\vec{h}=X \vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^{*} :

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

- We chose \vec{w}^{*} so that $\vec{h}=X \vec{w}^{*}$ is the projection of \vec{y} onto the span of the columns of the design matrix, X.

Multiple linear regression

departure_hour day_of_month minutes

$\mathbf{0}$	10.816667	15	68.0
$\mathbf{1}$	7.750000	16	94.0
$\mathbf{2}$	8.450000	22	63.0
$\mathbf{3}$	7.133333	23	100.0
$\mathbf{4}$	9.150000	30	69.0
\ldots	\ldots	\ldots	\ldots

So far, we've fit simple linear regression models, which use only one feature
('departure_hour') for making predictions.

Incorporating multiple features

- In the context of the commute times dataset, the simple linear regression model we fit was of the form:

$$
\begin{aligned}
\text { pred. commute } & =H(\text { departure hour }) \\
& =w_{0}+w_{1} \cdot \text { departure hour }
\end{aligned}
$$

- Now, we'll try and fit a simple linear regression model of the form:

$$
\begin{aligned}
\text { pred. commute } & =H(\text { departure hour }) \\
& =w_{0}+w_{1} \cdot \text { departure hour }+w_{2} \cdot \text { day of month }
\end{aligned}
$$

- Linear regression with multiple features is called multiple linear regression.
- How do we find w_{0}^{*}, w_{1}^{*}, and w_{2}^{*} ?

Geometric interpretation

- The hypothesis function:
$H($ departure hour $)=w_{0}+w_{1} \cdot$ departure hour
looks like a line in 2D.
- Questions:
- How many dimensions do we need to graph the hypothesis function:
$H($ departure hour $)=w_{0}+w_{1} \cdot$ departure hour $+w_{2} \cdot$ day of month
- What is the shape of the hypothesis function?

Our new hypothesis function is a plane in 3D!

The setup

- Suppose we have the following dataset.

departure_hour	day_of_month	minutes	
row			
1	8.45	22	63.0
2	8.90	28	89.0
3	8.72	18	89.0

- We can represent each day with a feature vector, \vec{x} :

The hypothesis vector

- When our hypothesis function is of the form:
$H($ departure hour $)=w_{0}+w_{1} \cdot$ departure hour $+w_{2} \cdot$ day of month the hypothesis vector $\vec{h} \in \mathbb{R}^{n}$ can be written as:

Finding the optimal parameters

- To find the optimal parameter vector, \vec{w}^{*}, we can use the design matrix $X \in \mathbb{R}^{n \times 3}$ and observation vector $\vec{y} \in \mathbb{R}^{n}$:

$$
\left.X=\left[\begin{array}{ccc}
1 & \text { departure hour }_{1} & \text { day }_{1} \\
1 & \text { departure hour }_{2} & \text { day }_{2} \\
\cdots & \cdots & \ldots \\
1 & \text { departure hour }_{n} & \operatorname{day}_{n}
\end{array}\right] \quad \vec{y}=\left[\begin{array}{c}
\text { commute time }_{1} \\
\text { commute time } \\
2
\end{array}\right] \vdots \vdots \begin{array}{c}
\text { commute time }_{n}
\end{array}\right]
$$

- Then, all we need to do is solve the normal equations:

$$
X^{T} X \vec{w}^{*}=X^{T} \vec{y}
$$

If $X^{T} X$ is invertible, we know the solution is:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

Roadmap

- To wrap up today's lecture, we'll find the optimal parameter vector \vec{w}^{*} for our new two-feature model in code. We'll switch back to our notebook, linked here.
- Next class, we'll present a more general framing of the multiple linear regression model, that uses d features instead of just two.
- We'll also look at how we can engineer new features using existing features.
- e.g. How can we fit a hypothesis function of the form

$$
H(x)=w_{0}+w_{1} x+w_{2} x^{2} ?
$$

