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Homework 3 is due on Saturday, April 27th.
We moved some office hours around – we now have some on Saturday!

Homework 1 scores are available on Gradescope.
Regrade requests are due on Sunday.

Groupwork 4 is on Monday. Remember to submit groupworks as a group – you won't

get any credit if you work alone!

The Midterm Exam is on Tuesday, May 7th in class.

We will have a review session on Friday, May 3rd from 2-5PM where we'll go
over old homework and exam problems.

We will be posting many past exams this weekend!
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Overview: Spans and projections.

Regression and linear algebra.

Multiple linear regression.
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Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!
If the direct link doesn't work, click the "  Lecture Questions"

link in the top right corner of dsc40a.com.
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https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfEaSAGovXZCk_51_CVI587CcGW1GZH1w4Y50dKDzoLEX3D4w/viewform
https://dsc40a.com/


Overview: Spans and projections
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Question: What vector in  is
closest to ?

The answer is the vector , where the
 is chosen to minimize the length of

the error vector:

Key idea: To minimize the length of the

error vector, choose  so that the error
vector is orthogonal to .

6



Question: What vector in  is
closest to ?

Answer: It is the vector , where:
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Question: What vector in
 is closest to ?

The answer is the vector
, where  and  are

chosen to minimize the length of the
error vector:

Key idea: To minimize the length of the

error vector, choose  and  so that
the error vector is orthogonal to both

and .

If  and  are linearly

independent, they span a plane.
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Question: What vector in  is closest to ?

To help, we can create a matrix, , by stacking  and  next to each other:

Then, instead of writing vectors in  as , we can say:

Key idea: Find  such that the error vector, , is orthogonal to every

column of .
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Key idea: Find  such that the error vector, , is orthogonal to the
columns of .

Why? Because this will make the error vector as short as possible.

The  that accomplishes this satisfies:

Why? Because  contains the dot products of each column in  with . If
these are all 0, then  is orthogonal to every column of !
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The  that accomplishes this satisfies:

The last statement is referred to as the

normal equations.

Key idea: Find  such that the error vector, , is orthogonal to the
columns of .

Assuming  is invertible, this is the
vector:

This is a big assumption, because it

requires  to be full rank.

If  is not full rank, then there
are infinitely many solutions to the

normal equations,
.
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Original question: What vector in  is closest to ?

Final answer: Assuming  is invertible, it is the vector , where:

Revisiting our example:

Using a computer gives us .

So, the vector in  closest to  is .
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We just used linear algebra to solve an optimization problem.

Specifically, the function we minimized is:

This is a function whose input is a vector, , and whose output is a scalar!

The input, , to  that minimizes it is one that satisfies the normal
equations:

If  is invertible, then the unique solution is:

We're going to use this frequently!
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Regression and linear algebra
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Soon, we'll want to make predictions using more than one feature.
Example: Predicting commute times using departure hour and temperature.

Thinking about linear regression in terms of matrices and vectors will allow us to find
hypothesis functions that:

Use multiple features (input variables).

Are non-linear in the features, e.g. .

Let's see if we can put what we've just learned to use.
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Model: .

Loss function: .

To find  and , we minimized empirical

risk, i.e. average loss:

Observation: kind of looks
like the formula for the norm of a vector,

.
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual

values".

The hypothesis vector is the vector  with components . This is the

vector of predicted values.

The error vector is the vector  with components:
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Consider .
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Let's define a few new terms:

The observation vector is the vector . This is the vector of observed "actual

values".

The hypothesis vector is the vector  with components . This is the

vector of predicted values.

The error vector is the vector  with components:

Key idea: We can rewrite the mean squared error of  as:
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The hypothesis vector is the vector  with components . This is the

vector of predicted values.

For the linear hypothesis function , the hypothesis vector can be

written:
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Define the design matrix  as:

Define the parameter vector  to be .

Then, , so the mean squared error becomes:
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To find the optimal model parameters for simple linear regression,  and , we
previously minimized:

Now that we've reframed the simple linear regression problem in terms of linear

algebra, we can find  and  by finding the  that minimizes:

Do we already know the  that minimizes ?
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The optimal parameter vector, , is the one that minimizes:

Previously, we found that  minimizes the length of the error

vector, 

 is closely related to :

The minimizer of  is the same as the minimizer of !

Key idea:  also minimizes !

23



To find the optimal model parameters for simple linear regression,  and , we
previously minimized .

We found, using calculus, that:

.

.

Another way of finding optimal model parameters for simple linear regression is to find

the  that minimizes .

The minimizer, if  is invertible, is the vector .

These formulas are equivalent!
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To give us a break from math, we'll switch to a notebook, linked here, showing that
both formulas – that is, (1) the formulas for  and  we found using calculus, and

(2) the formula for  we found using linear algebra – give the same results.

Then, we'll use our new linear algebraic formulation of regression to incorporate

multiple features in our prediction process.
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec08/lec08-code.ipynb


Define the design matrix , observation vector , and parameter
vector  as:

How do we make the hypothesis vector, , as close to  as possible? Use the

parameter vector :

We chose  so that  is the projection of  onto the span of the columns

of the design matrix, . 26



Multiple linear regression
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So far, we've fit simple linear regression models, which use only one feature
( 'departure_hour' ) for making predictions.
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In the context of the commute times dataset, the simple linear regression model we fit
was of the form:

Now, we'll try and fit a simple linear regression model of the form:

Linear regression with multiple features is called multiple linear regression.

How do we find , , and ?
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The hypothesis function:

looks like a line in 2D.

Questions:

How many dimensions do we need to graph the hypothesis function:

What is the shape of the hypothesis function?
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Our new hypothesis function is a plane in 3D!
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Suppose we have the following dataset.

We can represent each day with a feature vector, :
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When our hypothesis function is of the form:

the hypothesis vector  can be written as:
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To find the optimal parameter vector, , we can use the design matrix
and observation vector :

Then, all we need to do is solve the normal equations:

If  is invertible, we know the solution is:
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To wrap up today's lecture, we'll find the optimal parameter vector  for our new
two-feature model in code. We'll switch back to our notebook, linked here.

Next class, we'll present a more general framing of the multiple linear regression
model, that uses  features instead of just two.

We'll also look at how we can engineer new features using existing features.

e.g. How can we fit a hypothesis function of the form

?
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http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2024-sp&subPath=lectures/lec08/lec08-code.ipynb

