Lecture 8

Regression and Linear Algebra

1

DSC 40A, Spring 2024

Announcements

- Homework 3 is due on Saturday, April 27th.
 - We moved some office hours around we now have some on Saturday!
- Homework 1 scores are available on Gradescope.
 - Regrade requests are due on Sunday.
- Groupwork 4 is on Monday. Remember to submit groupworks as a group you won't get any credit if you work alone!
- The Midterm Exam is on Tuesday, May 7th in class.
 - We will have a review session on Friday, May 3rd from 2-5PM where we'll go over old homework and exam problems.
 - We will be posting many past exams this weekend!

Agenda

- Overview: Spans and projections.
- Regression and linear algebra.
- Multiple linear regression.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the "S Lecture Questions" link in the top right corner of dsc40a.com.

Overview: Spans and projections

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The answer is the vector $w\vec{x}$, where the w is chosen to minimize the **length** of the error vector:

 $\|ec{e}\| = \|ec{y} - wec{x}\|$

• Key idea: To minimize the length of the error vector, choose w so that the error vector is orthogonal to \vec{x} .

Projecting onto the span of a single vector

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^* \vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

Projecting onto the span of multiple vectors

- Question: What vector in $\operatorname{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ is closest to \vec{y} ?
- The answer is the vector $w_1 \vec{x}^{(1)} + w_2 \vec{x}^{(2)}$, where w_1 and w_2 are chosen to minimize the **length** of the error vector:

 $\|ec{e}\| = \|ec{y} - w_1ec{x}^{(1)} - w_2ec{x}^{(2)}\|$

• Key idea: To minimize the length of the error vector, choose w_1 and w_2 so that the error vector is orthogonal to both $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$.

If $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ are linearly independent, they span a plane.

Matrix-vector products create linear combinations of columns!

- Question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- To help, we can create a matrix, X, by stacking $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ next to each other:

$$X = egin{bmatrix} | & | \ ec{x}^{(1)} & ec{x}^{(2)} \ | & | \end{bmatrix} = egin{bmatrix} 2 & -1 \ 5 & 0 \ 3 & 4 \end{bmatrix} \qquad ec{y} = egin{bmatrix} 1 \ 3 \ 9 \end{bmatrix}$$

• Then, instead of writing vectors in $\mathrm{span}(ec{x}^{(1)}, ec{x}^{(2)})$ as $w_1 ec{x}^{(1)} + w_2 ec{x}^{(2)}$, we can say:

$$egin{array}{ccc} Xec w & ext{w} & ext{where }ec w = egin{bmatrix} w_1 \ w_2 \end{bmatrix}$$

• Key idea: Find \vec{w} such that the error vector, $\vec{e} = \vec{y} - X\vec{w}$, is orthogonal to every column of X.

Constructing an orthogonal error vector

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} X\vec{w}$, is orthogonal to the columns of X.
 - Why? Because this will make the error vector as short as possible.
- The \vec{w}^* that accomplishes this satisfies:

$$X^T \vec{e} = 0$$

• Why? Because $X^T \vec{e}$ contains the **dot products** of each column in X with \vec{e} . If these are all 0, then \vec{e} is **orthogonal** to **every column of** X!

$$X^T ec{e} = egin{bmatrix} -ec{x}^{(1)^T} - \ -ec{x}^{(2)^T} - \end{bmatrix} ec{e} = egin{bmatrix} ec{x}^{(1)^T} ec{e} \ ec{x}^{(2)^T} ec{e} \end{bmatrix}$$

The normal equations

- Key idea: Find $\vec{w} \in \mathbb{R}^d$ such that the error vector, $\vec{e} = \vec{y} X\vec{w}$, is orthogonal to the columns of X.
- The $ec{w}^*$ that accomplishes this satisfies:

 $egin{aligned} X^T ec{e} &= 0 \ X^T (ec{y} - X ec{w}^*) &= 0 \ X^T ec{y} - X^T X ec{w}^* &= 0 \ & \longrightarrow \ X^T X ec{w}^* &= X^T ec{y} \end{aligned}$

• The last statement is referred to as the **normal equations**.

• Assuming $X^T X$ is invertible, this is the vector:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

- This is a big assumption, because it requires $X^T X$ to be **full rank**.
- If $X^T X$ is not full rank, then there are infinitely many solutions to the normal equations, $X^T X \vec{w}^* = X^T \vec{y}.$

What does it mean?

- Original question: What vector in $\operatorname{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
- Final answer: Assuming $X^T X$ is invertible, it is the vector $X \vec{w}^*$, where:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

• Revisiting our example:

$$X = \begin{bmatrix} | & | \\ \vec{x}^{(1)} & \vec{x}^{(2)} \\ | & | \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 5 & 0 \\ 3 & 4 \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$$

- Using a computer gives us $\vec{w}^* = (X^T X)^{-1} X^T \vec{y} \approx \begin{vmatrix} 0.7289 \\ 1.6300 \end{vmatrix}$.
- So, the vector in $\operatorname{span}(\vec{x}^{(1)},\vec{x}^{(2)})$ closest to \vec{y} is $0.7289\vec{x}^{(1)}+1.6300\vec{x}^{(2)}$.

An optimization problem, solved

- We just used linear algebra to solve an **optimization problem**.
- Specifically, the function we minimized is:

$$\operatorname{error}(ec{w}) = \|ec{y} - Xec{w}\|$$

• This is a function whose input is a vector, \vec{w} , and whose output is a scalar!

• The input, \vec{w}^* , to $\operatorname{error}(\vec{w})$ that minimizes it is one that satisfies the normal equations:

$$X^T X \vec{w}^* = X^T \vec{y}$$

If $X^T X$ is invertible, then the unique solution is:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

• We're going to use this frequently!

Regression and linear algebra

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - $\circ\,$ Are non-linear in the features, e.g. $H(x)=w_0+w_1x+w_2x^2.$
- Let's see if we can put what we've just learned to use.

Simple linear regression, revisited

- Model: $H(x) = w_0 + w_1 x$.
- Loss function: $(y_i H(x_i))^2$.
- To find w_0^* and w_1^* , we minimized empirical risk, i.e. average loss:

$$R_{ ext{sq}}(H) = rac{1}{n}\sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- Observation: $R_{
m sq}(w_0,w_1)$ kind of looks like the formula for the norm of a vector,

$$\|ec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}.$$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$\boldsymbol{e_i} = \boldsymbol{y_i} - \boldsymbol{H}(\boldsymbol{x_i})$$

Example

Consider
$$H(x) = 2 + \frac{1}{2}x$$
.
 $\vec{y} = \vec{h} =$
 $\vec{e} = \vec{y} - \vec{h} =$
 $R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2$
 $=$

 $ec{h} =$

Regression and linear algebra

Let's define a few new terms:

- The observation vector is the vector $\vec{y} \in \mathbb{R}^n$. This is the vector of observed "actual values".
- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components:

$$e_i = y_i - H(x_i)$$

• Key idea: We can rewrite the mean squared error of *H* as:

$$R_{
m sq}(H) = rac{1}{n} \sum_{i=1}^n \left(oldsymbol{y}_i - H(x_i)
ight)^2 = rac{1}{n} \|oldsymbol{ec{e}}\|^2 = rac{1}{n} \|oldsymbol{ec{y}} - oldsymbol{ec{h}}\|^2$$

The hypothesis vector

- The **hypothesis vector** is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear hypothesis function $H(x) = w_0 + w_1 x$, the hypothesis vector can be written:

$$ec{h} = egin{bmatrix} w_0 + w_1 x_1 \ w_0 + w_1 x_2 \ dots \ dots \ w_0 + w_1 x_n \end{bmatrix} = \ dots \ w_0 + w_1 x_n \end{bmatrix}$$

Rewriting the mean squared error

• Define the **design matrix** $X \in \mathbb{R}^{n \times 2}$ as:

$$X = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & dots \ 1 & x_n \end{bmatrix}$$

- Define the parameter vector $ec w \in \mathbb{R}^2$ to be $ec w = egin{bmatrix} w_0 \\ w_1 \end{bmatrix}$.
- Then, $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{ ext{sq}}(H) = rac{1}{n} \|ec{oldsymbol{y}} - ec{oldsymbol{h}}\|^2 \implies egin{array}{c} R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{oldsymbol{y}} - oldsymbol{X} ec{w}\|^2 \end{array}$$

Minimizing mean squared error, again

• To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (m{y_i} - (w_0 + w_1m{x_i}))^2$$

• Now that we've reframed the simple linear regression problem in terms of linear algebra, we can find w_0^* and w_1^* by finding the $\vec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$ that minimizes:

$$egin{aligned} R_{ ext{sq}}(ec{w}) &= rac{1}{n} \|ec{y} - oldsymbol{X}ec{w}\|^2 \end{aligned}$$

• Do we already know the $ec{w^*}$ that minimizes $R_{
m sq}(ec{w})$?

An optimization problem we've seen before

• The optimal parameter vector, $ec{w}^* = \begin{bmatrix} w_0^* & w_1^* \end{bmatrix}^T$, is the one that minimizes:

$$R_{ ext{sq}}(ec{w}) = rac{1}{n} \|ec{y} - Xec{w}\|^2$$

- Previously, we found that $\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$ minimizes the length of the error vector, $\|\vec{e}\| = \|\vec{y} X\vec{w}\|$
- $R_{
 m sq}(ec{w})$ is closely related to $\|ec{e}\|$:

- The minimizer of $\|ec{e}\|$ is the same as the minimizer of $R_{
 m sq}(ec{w})!$
- Key idea: $ec{w}^* = (X^T X)^{-1} X^T ec{y}$ also minimizes $R_{
 m sq}(ec{w})!$

The optimal parameter vector, $ec{w}^*$

- To find the optimal model parameters for simple linear regression, w_0^* and w_1^* , we previously minimized $R_{
 m sq}(w_0,w_1) = rac{1}{n}\sum_{i=1}^n (y_i (w_0 + w_1 x_i))^2$.
 - We found, using calculus, that:

•
$$w_1^* = rac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

• $w_0^* = \bar{y} - w_1^* \bar{x}.$

• Another way of finding optimal model parameters for simple linear regression is to find the \vec{w}^* that minimizes $R_{
m sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$.

 $\circ~$ The minimizer, if $X^T X$ is invertible, is the vector $\left|ec{w}^* = (X^T X)^{-1} X^T ec{y}
ight|$

• These formulas are equivalent!

Roadmap

- To give us a break from math, we'll switch to a notebook, linked here, showing that both formulas that is, (1) the formulas for w_1^* and w_0^* we found using calculus, and (2) the formula for \vec{w}^* we found using linear algebra give the same results.
- Then, we'll use our new linear algebraic formulation of regression to incorporate **multiple features** in our prediction process.

Summary: Regression and linear algebra

• Define the design matrix $X \in \mathbb{R}^{n \times 2}$, observation vector $\vec{y} \in \mathbb{R}^n$, and parameter vector $\vec{w} \in \mathbb{R}^2$ as:

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

• How do we make the hypothesis vector, $\vec{h} = X\vec{w}$, as close to \vec{y} as possible? Use the parameter vector \vec{w}^* :

$$\vec{w}^* = (X^T X)^{-1} X^T \vec{y}$$

• We chose \vec{w}^* so that $\vec{h} = X\vec{w}^*$ is the projection of \vec{y} onto the span of the columns of the design matrix, X.

Multiple linear regression

	departure_hour	day_of_month	minutes
0	10.816667	15	68.0
1	7.750000	16	94.0
2	8.450000	22	63.0
3	7.133333	23	100.0
4	9.150000	30	69.0

So far, we've fit **simple** linear regression models, which use only **one** feature ('departure_hour') for making predictions.

Incorporating multiple features

• In the context of the commute times dataset, the simple linear regression model we fit was of the form:

 $ext{pred. commute} = H(ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour}$

Now, we'll try and fit a simple linear regression model of the form:

 $ext{pred. commute} = H(ext{departure hour}) \ = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$

- Linear regression with multiple features is called multiple linear regression.
- How do we find w_0^st, w_1^st , and w_2^st ?

Geometric interpretation

• The hypothesis function:

```
H(	ext{departure hour}) = w_0 + w_1 \cdot 	ext{departure hour}
```

looks like a **line** in 2D.

- Questions:
 - How many dimensions do we need to graph the hypothesis function: $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$
 - What is the shape of the hypothesis function?

Commute Time vs. Departure Hour and Day of Month

Our new hypothesis function is a **plane** in 3D!

The setup

• Suppose we have the following dataset.

	departure_hour	day_of_month	minutes
row			
1	8.45	22	63.0
2	8.90	28	89.0
3	8.72	18	89.0

• We can represent each day with a **feature vector**, \vec{x} :

The hypothesis vector

• When our hypothesis function is of the form:

 $H(ext{departure hour}) = w_0 + w_1 \cdot ext{departure hour} + w_2 \cdot ext{day of month}$ the hypothesis vector $ec{h} \in \mathbb{R}^n$ can be written as:

$$ec{h} = egin{bmatrix} H(ext{departure hour}_1, ext{day}_1)\ H(ext{departure hour}_2, ext{day}_2)\ \dots\ H(ext{departure hour}_n, ext{day}_n) \end{bmatrix} = egin{bmatrix} 1 & ext{departure hour}_2 & ext{day}_1\ 1 & ext{departure hour}_2 & ext{day}_2\ \dots\ 1 & ext{departure hour}_n & ext{day}_n \end{bmatrix} egin{bmatrix} w_0\ w_1\ w_2 \end{bmatrix}$$

Finding the optimal parameters

• To find the optimal parameter vector, \vec{w}^* , we can use the **design matrix** $X \in \mathbb{R}^{n \times 3}$ and **observation vector** $\vec{y} \in \mathbb{R}^n$:

$$X = \begin{bmatrix} 1 & \text{departure hour}_1 & \text{day}_1 \\ 1 & \text{departure hour}_2 & \text{day}_2 \\ \dots & \dots & \dots \\ 1 & \text{departure hour}_n & \text{day}_n \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} \text{commute time}_1 \\ \text{commute time}_2 \\ \vdots \\ \text{commute time}_n \end{bmatrix}$$

• Then, all we need to do is solve the **normal equations**:

$$X^T X ec{w}^* = X^T ec{y}$$

If $X^T X$ is invertible, we know the solution is:

$$ec{w}^* = (X^T X)^{-1} X^T ec{y}$$

Roadmap

- To wrap up today's lecture, we'll find the optimal parameter vector \vec{w}^* for our new two-feature model in code. We'll switch back to our notebook, linked here.
- Next class, we'll present a more general framing of the multiple linear regression model, that uses d features instead of just two.
- We'll also look at how we can **engineer** new features using existing features.
 - $\circ~$ e.g. How can we fit a hypothesis function of the form

$$H(x) = w_0 + w_1 x + w_2 x^2$$
?